dc.identifier.citation |
[1] S. Roundy, P. K. Wright and J. M. Rabaey, Energy scavenging for wireless sensor networks with special focus on vibrations, Kluwer Academic Publishers (2004). [2] Curie J, Curie P (1880a) Développement, par pression, de l’électricité polaire dans les cristaux hémièdres faces ‘ inclinées. C R Acad Sci Gen 91:294–295 [3] Curie J, Curie P (1880b) Sur l’électricité polaire dans les cristaux hémièdres ‘ faces inclinées. C R Acad Sci Gen 91:383–386 [4] Hankel WG (1881) Uber die aktinound piezoelektrischen eigen schaften des bergkrystalles und ihre beziehung zi den thermoelektrischen. Abh Sachs 12:457 [5] S. Roundy, P. K. Wright, and J. M. Rabaey, Energy scavenging for wireless sensor networks: with special focus on vibrations, Kluwer Academic Publishers, Boston, 2004. [6] Krautkrämer, J. & Krautkrämer, H. (1990). Ultrasonic Testing of Materials. Springer.[ISBN missing] [7]Erhart, Jiří. "Piezoelectricity and ferroelectricity: Phenomena and propertie"(PDF). Department of Physics, Technical University of Liberec. Archived from the original on May 8, 2014. [8] Curie, Jacques; Curie, Pierre(1880). "Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées" [Development, via compression, of electric polarization in hemihedral crystals with inclined faces]. Bulletin de la Société minérologique de France. 3: 90–93. Reprinted in: Curie, Jacques; Curie, Pierr (1880). "Développement, par pression, de l'électricité polaire dans les cristaux hémièdres à faces inclinées". Comptes rendus (in French). 91: 294–295. See also: Curie, Jacques; Curie, Pierre(1880). "Sur l'électricité polaire dans les cristaux hémièdres à faces inclinées" [On electric polarization in hemihedral crystals with inclined faces]. Comptes rendus (in French). 91: 383–386. [9] Lippmann, G. (1881). "Principe de la conservation de l'électric" [Principle of the conservation of electricity]. Annales de chimie et de physique (in French). 24: 145. [10] Curie, Jacques; Curie, Pierre(1881). "Contractions et dilatations produites par des tensions dans les cristaux hémièdres à faces inclinées" [Contractions and expansions produced by voltages in hemihedral crystals with inclined faces]. Comptes rendus (in French). 93: 1137–1140. [11] Voigt, Woldemar (1910). Lehrbuch der Kristallphysik. Berlin: B. G. Teubner. [12]Katzir, S. (2012). "Who knew piezoelectricity? Rutherford and Langevin on submarine detection and the invention of sonar" Notes Rec. R. Soc. 66 (2): 141–157. doi10.1098/rsnr.2011.0049 38 [13]M. Birkholz (1995). "Crystal-field induced dipoles in heteropolar crystals – II. physical significanc". Z. Phys. B. 96 (3): 333–340. Bibcode:1995ZPhyB..96..333B doi:10.1007/BF01313055. [14]U. K. Singh and R. H. Middleton, "Piezoelectric power scavenging of mechanical vibration energy", Australian Mining Technology Conference, 2-4 October (2007), pages 111-118. [15] Roundy S., Wright P. K. and Rabaye J., "A. study of lowlevel vibrations as a power source for wireless sensor nodes", Computer Communications 26 (2003) 1131–1144. [16] Steven R. Anton and Henry A. Sodano, A review of power harvesting using piezoelectric materials (2003-2006), Smart Materials and Structures 16 (2007) R1–R21. [17] Y. C. Shu and I. C. Lien, "Analysis of power output for piezoelectric energy harvesting systems", Smart Materials and Structures 15 (2006), pages 1499-1512. [18] Jan Heine and Andreas Oehler, Vintage Bicycle Press Vol. 3, No. 4, 2005 [19] A. Erturk and D. J. Inman, “Issues in mathematical modeling of piezoelectric energy harvesters”, [20] N. E. Dutoit, B. L. Wardle, and S.-G. Kim, “Design considerations for MEMS-scale piezoelectric [21] A. Erturk and D. J. Inman, “Comment on ‘Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation”’, Smart Mater. Struct. 17:5 (2008), 058001. Smart Mater. Struct. [22] A. Erturk and D. J. Inman, “An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations”, Smart Mater. Struct. 18:2 (2009), 025009. [23] F. Wang, G. J. Tang, and D. K. Li, “Accurate modeling of a piezoelectric composite beam”, Smart Mater. Struct. 16:5 (2007), 1595–1602. [24] K.-J. Bathe, Finite element procedures, 2nd ed., Prentice Hall, Englewood Cliffs, NJ, 1995.mechanical vibration energy harvesters”, Integr. Ferroelectr. 71:1 (2005), 121–160. [25] P. Glynne-Jones, M. J. Tudor, S. P. Beeby, and N. M. White, “An electromagnetic, vibration-powered generator for intelligent sensor systems”, Sens. Actuators A Phys. 110:1–3 (2004), 344–349. [26] Y. Liao and H. A. Sodano, “Model of a single model energy harvester and properties for optimal power generation”, Smart Mater. Struct. 17:6 (2008), 065026. 39 [27] S. Roundy, P. K. Wright, and J. M. Rabaey, Energy scavenging for wireless sensor networks: with special focus on vibrations, Kluwer Academic Publishers, Boston, 2004. [28] H. A. Sodano, G. Park, and D. J. Inman, “A review of power harvesting from vibration using piezoelectric materials”, Shock Vib. Digest 36:3 (2004), 197–205. [29] J. Yang, Analysis of piezoelectric devices, World Scientific, Singapore, 2006. |
en_US |