dc.identifier.citation |
1] Wang, Q., Chen, F., Xu, W., Yang, M.H.: An experimental comparison of online object tracking algorithms. Proceedings of SPIE: Image and Signal Processing Track (2011) [2] B. Lucas and T. Kanade, ”An iterative image registration technique with an application to stereo vision,” in Proceeding of International Joint Conference on Arti cial Intelligence, pp. 674-679, 1981. [3] A. Azarbayejani and A. Pentland, ”Recursive estimation of motion, structure, and focal length,” IEEE Transactions on Pattern Analysis and Machine Intelligence 17(6), pp. 562-575, 1995. [4] H. Grabner and H. Bischof, ”On-line boosting and vision,” in Proceedings of emphIEEE Conference on Computer Vision and Pattern Recognition, pp. 260-267, 2006. [5] H. Grabner, C. Leistner, and H. Bischof, ”Semi-supervised on-line boosting for robust tracking,” in Proceedings of European Conference on Computer Vision, pp. 234-247, 2008. [6] S. Stalder, H. Grabner, and L. Van Gool, ”Beyond semi-supervised tracking: Tracking should be as simple as detection, but not simpler than recognition,” in Proceedings of IEEE Workshop on Online Learning for Computer Vision, 2009. 38 5.0 BIBLIOGRAPHY 39 [7] B. Babenko, M.-H. Yang, and S. Belongie, ”Visual tracking with online multiple instance learning,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 983-990, 2009. [8] Z. Kalal, J. Matas, and K. Mikolajczyk, ”P-n learning: Bootstrapping binary classifiers by structural constraints,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 49-56, 2010. [9] Z. Kalal, J. Matas, and K. Mikolajczyk. ”Online learning of robust object detectors during unstable tracking.” OLCV, 2009. [10] Z. Kalal, K. Mikolajczyk, and J. Matas, ”Forward-Backward Error: Automatic Detection of Tracking Failures,” International Conference on Pattern Recognition, 2010. [11] J. Barron and N.A.Thacker, ”Tutorial: Computing 2D and 3D Optical Flow,” Tina Memo 2004-012 [12] Y. Chen, and I. Bajic, ”Motion vector outlier rejection cascade for global motion estimation,” IEEE Signal Processing Letters, vol. 17, no. 2, 2010, pp. 197-200. [13] Robert C. Bolles Martin A. Fischler, ”Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography,” ACM Communications, vol. 24(6), pp. 381-395, 1981. [14] Y. Su, M.-T. Sun, and V. Hsu, ”Global motion estimation from coarsely sampled motion vector field and the applications,” IEEE Trans. Circuits Syst. Video Technol, vol. 15, no. 2, pp. 232-242, Feb. 2005. [15] S. Tubaro and S. Rocca, ”Motion field estimators and their application to image interpolation,” in Motion Analysis and Image Sequence Processing,M. I. Sezan and R. L. Lagendijk, Eds. Norwell, MA: Kluwer, 1993, pp. 153-187. 5.0 BIBLIOGRAPHY 40 [16] D. Farin, ”Automatic Video Segmentation Employing Object/Camera Modeling Techniques,” Ph.D. Thesis, Technische Univ. Eindhoven, Eindhoven, Netherlands, 2005. [17] I. Haritaoglu, D. Harwood, and L. Davis, ”W4s: A real-time system for detecting and tracking people,” in Proceedingsof IEEE Conference on Computer Vision and Pattern Recognition, pp. 962-968, 1998. [18] M. de La Gorce, N. Paragios, and D. Fleet, ”Model-based hand tracking with texture, shading and self-occlusions,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2008. [19] Z. Sun, G. Bebis, and R. Miller, ”On-road vehicle detection: A review,” IEEE Transactions on Pattern Analysis and Machine Intelligence 28(5), pp. 694-711, 2006. [20] M. Kim, S. Kumar, V. Pavlovic, and H. Rowley, ”Face tracking and recognition with visual constraints in real-world videos,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-8, 2008. [21] X. Zhou, D. Comaniciu, and A. Gupta, ”An information fusion framework for robust shape tracking,” IEEE Transactions on Pattern Analysis and Machine Intelligence 27(1), pp. 115-129, 2005. [22] ”MPEG-4 Video Verification Model version 18.0,”, ISO/IEC JTC1/SC29/WG11, 2001. [23] F. Dufaux and J. Konrad, ”Efficient, robust, and fast global motion estimation for video coding,” IEEE Trans. Image Process, vol. 9, no. 3, pp. 497-501, Mar. 2000. [24] Y. T. Tse and R. L. Baker, ”Global zoom/pan estimation and compensation for video compression,” in Proc. ICASSP'91, Toronto, ON, Canada, May 1991, pp. 2725-2728. 5.0 BIBLIOGRAPHY 41 [25] H. Jozawa, K. Kamikura, A. Sagata, H. Kotera, and H.Watanabe, ”Twostagemotion compensation using adaptive global MC and local affine MC,” IEEE Trans. Circuits Syst. Video Technol., vol. 7, no. 2, pp. 75-85, Feb. 1997. |
en_US |