dc.identifier.citation |
[1] Doig, G.C., Barber, T.J., Leonardi, E., Neely, J., Kleine, H., 2008. Methods for investigating supersonic ground effect in a blowdown wind tunnel, Shock Waves, 18: 155-15. [2] Kobiera, A., Szymczyk, J., Wola‘nski, P., Kuhl, A., 2009. Study of the shock-induced acceleration of hexane droplets, Shock Waves, 18: 475-85. [3] Pianthong, K., Zakrzewski, S., Behnia, M., Milton, B.E., 2002. Supersonic liquid jets: Their generation and shock wave characteristics, Shock Waves, 11: 457-66. [4] Ribner, H. S. 1953, ― Convection of a pattern of vorticity through a shock wave.‖ NACA TN-2864, 1953. [5] Ribner, H. S. 1954, ― Shock-turbulence interaction and the generation of noise.‖ NACA TN-3255, 1954. [6] Ribner, H. S. 1969, ― Acoustic energy flux from shock-turbulence interaction.‖ Journal of Fluid Mechanics Vol. 35, 1969, pp. 299-310. [7] Kovasznay, L. S. G. 1953, ―Turbulence in supersonic flow.‖ J. Aero. Sci. Vol. 20, pp. 657-682. [8] Lighthill, M. J. 1953, ―On the energy scattered from the interaction of turbulence with sound or shock wave.‖ Proc. Camb. Phil. Soc. 49, 531-551. [9] Moore, F. K. 1953, ―Unsteady oblique interaction of a shock wave with a plane disturbances.‖ NACA TN-2879, 1953. [10] Kerrebrock, J. L. 1956, ― The interaction of flow discontinuities with small disturbances in a compressible fluid.‖ Ph.D. thesis, California Institute of Technology. [11] Ribner, H. S. 1987, ― Spectra of noise and amplified turbulence emanating from shock-turbulence interaction.‖ AIAA J. Vol. 25, 436-442. [12] Anyiwo, J. C. & Bushnell, D. M. 1982, ―Turbulence amplification in shock-wave boundary-layer interaction.‖ AIAA J. Vol. 20, 893-899. [13] Sekundov, A. N. 1974, ―Supersonic flow turbulence and interaction with a shock wave.‖ Izv. Akad. Nauk SSR Mekh. Zhidk. Gaza, March-April 1974. 99 [14] Donsanjh, D. S. & Weeks, T. M. 1964, ―Interaction of a starting vortex as well as Karman vortex streets with traveling shock wave.‖ AIAA paper No. 64-425, 1964. [15] Chu, B. T. & Kovasznay, L. S. G. 1957, ―Non-linear interactions in a viscous heat-conducting compressible flow.‖ Journal of Fluid Mechanics Vol. 3, 1957, pp. 494. [16] Hesselink, L , Sturtevant, B. 1988; ― Propagation of weak shocks through a random medium.‖ J. Fluid Mechanics 196: 513-553. [17] Richtmyer, R. D. 1960, Commun. Pure Appl. Math. Vol. 13, 297 (1960). [18] Meshkov, E. E. 1969, Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza Vol. 4, 151 (1969). [19] Doig, G.C., Barber, T.J., Leonardi, E., Neely, J., Kleine, H., 2008. Methods for investigating supersonic ground effect in a blowdown wind tunnel, Shock Waves, 18: 155-15. [20] Craig JE (1977) Shock waves in open ended ducts with complex geometry.Ph D Aeronautics. California Institute of Technology,Pasdene CA,USA. [21] Szumowski AP (1971) Attenuation of Shockwaves along a perforated tube. In: Stollery JL, Gaydon AG, Wen PR (eds) Shock Tube Research, Proc 8th Int Symp Shock Tubes. Chapman & Hall 14. [22] Sugimoto N (1992) Propagation of nonlinear acoustic waves in a tunnel with an array of Helmholtz resonators. J Fluid Mech 244: 55-78. [23] Onodera H, Takayama K (1992) An analysis of shock wave propagation over perforated wall and its discharge coefficient. Trans Jpn Soc Mech Eng B (in Japanese). 58:1408. [24] Takayama K, Sasoh A, Onodera O, Kaneko R, Matsui Y (1995) Experimental investigation on tunnel sonic boom. Shock Waves 5:127{138} [25] Ben-Dor, G., Takayama, K.: The phenomena of shock wave reflection—a review of unsolved problems and future research needs. Shock Waves 2, 211–223 (1992) 100 [26] Timofeev, E., Voinovich, P., Saito, T., Takayama, K.: Three dimentional unsteady reflection of a planar shock wave from an inclined cylinder. In: Proceedings of International Symposium on Interdisciplinary Shock Wave Research, ISISW, Matsushima Japan, pp. 498–517 (2004). This paper is available in ISWI Proceedings Archive 2007. [27] Markstein, G.H.: Nonsteady Flame Propagations. Mac-Millan, New York (1964). [28] Batley, G.A., McIntosh, A.C., Brindley, J., Falle, S.A.E.G.: (1994) A numerical study of the vorticity field generated by the baroclinic effect due to the propagation of a planar pressure wave through a cylindrical premixed laminar flame. J. Fluid Mech. 279, 217–237. doi:10.1017/S0022112094003897 [29] Khokhlov, A.M., Oran, E.S., Chtchelkanova, A.Y., Wheeler, J.C.: (1999) Interaction of a shock with a sinusoidally perturbed flame. Combust Flame 117, 99–116. [30] Ju, Y., Shimano, A., Inoue, O.: Vorticity generation and flame distortion induced by shock–flame interaction. Proc. Combust Inst. 27, 735–741 (1998) [31] Gelfand, B.E., Khomik, S.V., Bartenev, A.M., Medvedev, S.P., Groing, H., Olivier, H.: (2000) Detonation and deflagration at the focusing of shockwaves in combustible gaseous mixture. Shock Waves. 10, 197–204. doi:10.1007/s001930050007 [32] Bartenev, A.M., Khomik, S.V., Gelfand, B.E., Gronig, H., Olivier, H.: (2000) Effect of reflection type on detonation initiation at shock-wave focusing. Shock Waves 10, 205–215. [33] Shinsuke Udagawa·Walter Garen ·Bernd Meyerer. Motion analysis of a diaphragmless driver section for a narrow channel shock tube. Shock Waves (2008) 18:345–351 DOI 10.1007/s00193-008-0171-9 [34] Abdellah Hadjadj · Marcello Onofri . Nozzle flow separation. Shock Waves (2009) 19:163–169. DOI 10.1007/s00193-009-0209-7 [35] Zeitoun, D.E., Burtschel, Y.: Navier–stokes computations in micro shock tubes. Shock Waves 15, 241–246 (2006) 101 [36] Trimpi, R.L., Cohen, N.B.: A theory for predicting the flow of real gases in shock tubes with experimental verification. Technical Report NACA 3375, National Advisory Committee for Aeronautics 1955) [37] Emrich, R.J., Wheeler, D.B.:Wall effects in shock tube flow. Phys. Fluids 1, 14–23 (1958) [38] Mirels, H.: Attenuation in a shock tube due to unsteady-boundary layer action. Technical Report TN 1333, National Advisory Committee for Aeronautics (1957). [39] Roshko, A.: On flow duration in low-pressure shock tubes. Phys. Fluids 3(6), 835–842 (1960). [40] Mirels, H.: Correlation fomulas for laminar shock tube boundary layer. Phys. Fluids 9(7), 1265–1272 (1966). [41] Chen, C.J., Emrich, R.J.: Ivestigation of the shock-tube boundary layer by a tracer method. Phys. Fluids 6(1), 1–9 (1963). [42] Sun, M., Ogawa, T., Takayama, K.: Shock propagation in narrow channels. In: Proceedings of the 23nd International Symposium on Shock Waves, vol. 2227. Forth worth, Texas (2002). [43] Toro EF (1999) Riemann solvers and numerical methods for fluid dynamics. 2nd edition, Springer. Berlin, Heidelberg, New York. [44] Ben-Dor, G.: Shock Wave Reflection Phenomena, 2nd edn. Springer, New York (2007). [45] Yanchao Shi, Hong Hao and Zhong-Xian Li (2007) Numerical simulation of blast wave interaction with structure columns. Shock Waves Journal, Vol. 17: 113-33. [46] O. Igra, L. Wang, J. Falcovitz and W. Heilig (1998) Shock wave propagation in a branched duct. Shock Waves Journal, Vol. 8: 375-81. [47] Lee S, Lele SK, Moin P (1993) Direct numerical simulation of isotropic turbulence interacting with a weak shock wave. Journal of Fluid Mechanics 251: 533-62 [48] Rotman D (1991) Shock wave effects on a turbulent flows. Phys. Fluids A3: 1792-806 102 [49] Jinnah MA (2005) Numerical and experimental study of Shock/Turbulent flow interaction. Doctor Thesis, Tohoku University. [50] Numata D., Ohtani K. and Takayama K. (2009) Diffuse holographic interferometric observation of shock wave reflection from a skewed wedge, Shock Waves, 19: 103-112. [51] Saito T., Takayama K. (1999) Numerical simulations of nozzle starting process, Shock Waves, 9: 73-79. |
en_US |