dc.identifier.citation |
[1] A. Nordin, L. Eriksson, and M. Öhman, “NO reduction in a fluidized bed combustor with primary measures and selective non-catalytic reduction. A 35 screening study using statistical experimental designs,” Fuel, vol. 74, no. 1, pp. 128–135, 1995, doi: 10.1016/0016-2361(94)P4344-2. [2] M. Koebel and M. Elsener, “Selective catalytic reduction of NO over commercial DeNO(x)-catalysts: Experimental determination of kinetic and thermodynamic parameters,” Chem. Eng. Sci., vol. 53, no. 4, pp. 657–669, 1998, doi: 10.1016/S0009-2509(97)00342-4. [3] Y. Hu, S. Naito, N. Kobayashi, and M. Hasatani, “CO2, NOx and SO2 emissions from the combustion of coal with high oxygen concentration gases,” Fuel, vol. 79, no. 15, pp. 1925–1932, 2000, doi: 10.1016/S0016-2361(00)00047-8. [4] Q. Wu, M. Gu, Y. Du, and H. Zeng, “Synergistic removal of dust using the wet flue gas desulfurization systems,” R. Soc. Open Sci., vol. 6, no. 7, 2019, doi: 10.1098/rsos.181696. [5] Ž. Rosec, T. Katrašnik, U. Žvar Baškovič, and T. Seljak, “Exhaust gas recirculation with highly oxygenated fuels in gas turbines,” Fuel, vol. 278, no. May, 2020, doi: 10.1016/j.fuel.2020.118285. [6] E. Houshfar, R. A. Khalil, T. Løvås, and Ø. Skreiberg, “Enhanced NOx reduction by combined staged air and flue gas recirculation in biomass grate combustion,” Energy and Fuels, vol. 26, no. 5, pp. 3003–3011, 2012, doi: 10.1021/ef300199g. [7] A. A. Bhuiyan and J. Naser, “Numerical modelling of oxy fuel combustion, the effect of radiative and convective heat transfer and burnout,” Fuel, vol. 139, pp. 268–284, 2015, doi: 10.1016/j.fuel.2014.08.034. 36 [8] X. Wei et al., “Detailed modeling of NO x and SO x formation in Co-combustion of coal and biomass with reduced kinetics,” Energy and Fuels, vol. 26, no. 6, pp. 3117–3124, 2012, doi: 10.1021/ef201729r. [9] J. Li, X. Zhang, W. Yang, and W. Blasiak, “Effects of Flue Gas Internal Recirculation on NOx and SOx Emissions in a Co-Firing Boiler,” Int. J. Clean Coal Energy, vol. 02, no. 02, pp. 13–21, 2013, doi: 10.4236/ijcce.2013.22002. [10] J. P. Smart, R. Patel, and G. S. Riley, “Oxy-fuel combustion of coal and biomass, the effect on radiative and convective heat transfer and burnout,” Combust. Flame, vol. 157, no. 12, pp. 2230–2240, 2010, doi: 10.1016/j.combustflame.2010.07.013. [11] E. Croiset and K. V. Thambimuthu, “NOx and SO2 emissions from O2/CO2 recycle coal combustion,” Fuel, vol. 80, no. 14, pp. 2117–2121, 2001, doi: 10.1016/S0016-2361(00)00197-6. [12] A. Gopan, P. Verma, Z. Yang, and R. L. Axelbaum, “Quantitative analysis of the impact of flue gas recirculation on the efficiency of oxy-coal power plants,” Int. J. Greenh. Gas Control, vol. 95, no. January, p. 102936, 2020, doi: 10.1016/j.ijggc.2019.102936. [13] R. Scharler, I. Obernberger, G. Längle, and J. Heinzle, “CFD analysis of air staging and flue gas recirculation in biomass grate furnaces,” 1st World Conf. Biomass Energy Ind., vol. II, no. June, p. 4, 2000. [14] Y. Oki et al., “Development of oxy-fuel IGCC system with CO2 recirculation for CO2 capture,” Energy Procedia, vol. 4, pp. 1066–1073, 2011, doi: 37 10.1016/j.egypro.2011.01.156. [15] H. Liu and K. Okazaki, “Simultaneous easy CO2 recovery and drastic reduction of SOx and NOx in O2/CO2 coal combustion with heat recirculation,” Fuel, vol. 82, no. 11, pp. 1427–1436, 2003, doi: 10.1016/S0016-2361(03)00067-X. |
en_US |