Experimental study on acoustic energy harvesting using single and double PZT film configuration in Helmholtz resonator

Show simple item record

dc.contributor.author Shan, A.N.M Nihaj Uddin
dc.contributor.author Mostafa, Md. Zayed
dc.contributor.author Shohan, Md. Iftekhar Uddin
dc.date.accessioned 2022-01-18T06:20:10Z
dc.date.available 2022-01-18T06:20:10Z
dc.date.issued 2021-03-30
dc.identifier.citation [1] P. Glynne-Jones, M. J. Tudor, S. P. Beeby, and N. M. White, “An electromagnetic, vibration-powered generator for intelligent sensor systems,” Sensors Actuators, A Phys., vol. 110, no. 1–3, pp. 344–349, 2004. [2] S. B. Horowitz, M. Sheplak, L. N. Cattafesta, and T. Nishida, “A MEMS acoustic energy harvester,” J. Micromechanics Microengineering, vol. 16, no. 9, 2006. [3] F. Liu, S. Horowitz, T. Nishida, L. Cattafesta, and M. Sheplak, “A multiple degree of freedom electromechanical Helmholtz resonator,” J. Acoust. Soc. Am., vol. 122, no. 1, pp. 291–301, 2007. [4] M. Ferrari, V. Ferrari, M. Guizzetti, D. Marioli, and A. Taroni, “Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems,” Sensors Actuators, A Phys., vol. 142, no. 1, pp. 329–335, 2008. [5] L. Y. Wu, L. W. Chen, and C. M. Liu, “Acoustic energy harvesting using resonant cavity of a sonic crystal,” Appl. Phys. Lett., vol. 95, no. 1, pp. 2007–2010, 2009. [6] M. Lallart, D. Guyomar, C. Richard, and L. Petit, “Nonlinear optimization of acoustic energy harvesting using piezoelectric devices,” J. Acoust. Soc. Am., vol. 128, no. 5, pp. 2739–2748, 2010. [7] D. Vatansever, R. L. Hadimani, T. Shah, and E. Siores, “An investigation of energy harvesting from renewable sources with PVDF and PZT,” Smart Mater. Struct., vol. 20, no. 5, 2011. [8] B. Li and J. H. You, “Harvesting ambient acoustic energy using acoustic resonators,” Proc. Meet. Acoust., vol. 12, no. May, pp. 1–8, 2011. [9] B. Li, A. J. Laviage, J. H. You, and Y. J. Kim, “Harvesting low-frequency acoustic energy using multiple PVDF beam arrays in quarter-wavelength acoustic resonator,” Appl. Acoust., vol. 74, no. 11, pp. 1271–1278, 2013. [10] B. Li, J. H. You, and Y. J. Kim, “Low frequency acoustic energy harvesting using PZT piezoelectric plates in a straight tube resonator,” Smart Mater. Struct., vol. 22, no. 5, 2013. 59 [11] Z. R. Abrams, A. Niv, and X. Zhang, “Solar energy enhancement using down-converting particles: A rigorous approach,” J. Appl. Phys., vol. 109, no. 11, 2011. [12] V. J. Ovejas and A. Cuadras, “Multimodal piezoelectric wind energy harvesters,” Smart Mater. Struct., vol. 20, no. 8, 2011. [13] B. J. Hansen, Y. Liu, R. Yang, and Z. L. Wang, “Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy,” ACS Nano, vol. 4, no. 7, pp. 3647–3652, 2010. [14] S. H. Kim et al., “An electromagnetic energy scavenger from direct airflow,” J. Micromechanics Microengineering, vol. 19, no. 9, 2009. [15] S. E. Jo, M. S. Kim, and Y. J. Kim, “A resonant frequency switching scheme of a cantilever based on polyvinylidene fluoride for vibration energy harvesting,” Smart Mater. Struct., vol. 21, no. 1, 2012. [16] F. Liu et al., “Acoustic energy harvesting using an electromechanical Helmholtz resonator,” J. Acoust. Soc. Am., vol. 123, no. 4, pp. 1983–1990, 2008. [17] Z. Zhang, X. Zhang, Y. Rasim, C. Wang, B. Du, and Y. Yuan, “Design, modelling and practical tests on a high-voltage kinetic energy harvesting (EH) system for a renewable road tunnel based on linear alternators,” Appl. Energy, vol. 164, no. September 2015, pp. 152–161, 2016. [18] Z. Zhang et al., “A high-efficiency energy regenerative shock absorber using supercapacitors for renewable energy applications in range extended electric vehicle,” Appl. Energy, vol. 178, pp. 177–188, 2016. [19] H. Wang, A. Jasim, and X. Chen, “Energy harvesting technologies in roadway and bridge for di ff erent applications – A comprehensive review,” Appl. Energy, vol. 212, no. August 2017, pp. 1083–1094, 2018. [20] S. Orrego et al., “Harvesting ambient wind energy with an inverted piezoelectric flag,” Appl. Energy, vol. 194, pp. 212–222, 2017. [21] H. Vocca, I. Neri, F. Travasso, and L. Gammaitoni, “Kinetic energy harvesting with bistable 60 oscillators,” Appl. Energy, vol. 97, pp. 771–776, 2012. [22] X. Zhang, Z. Zhang, H. Pan, W. Salman, Y. Yuan, and Y. Liu, “A portable high-efficiency electromagnetic energy harvesting system using supercapacitors for renewable energy applications in railroads,” ENERGY Convers. Manag., vol. 118, pp. 287–294, 2016. [23] H. Roshani, S. Dessouky, A. Montoya, and A. T. Papagiannakis, “Energy harvesting from asphalt pavement roadways vehicle-induced stresses : A feasibility study,” Appl. Energy, vol. 182, pp. 210–218, 2016. [24] N. Fondevilla, C. Serre, M. C. Acero, E. Cabruja, H. Campanella, and J. Esteve, “Electromagnetic Harvester Device for Scavenging Ambient Mechanical Energy with Slow , Variable , and Randomness Nature,” no. May, pp. 1–5, 2011. [25] Ö. Zorlu, E. T. Topal, and H. Külah, “A Vibration-Based Electromagnetic Energy Harvester Using Mechanical Frequency Up-Conversion Method,” vol. 11, no. 2, pp. 481–488, 2011. [26] J. Granstrom, J. Feenstra, and H. A. Sodano, “harvesting A review of power harvesting using piezoelectric materials ( 2003 – 2006 ),” 2006. [27] B. Li and Y. Kim, “IMECE2012-86989,” pp. 1–7, 2016. [28] Q. S. Resonator, B. Li, and J. H. You, “Simulation of Acoustic Energy Harvesting Using Piezoelectric Plates in a Simulation of Acoustic Energy Harvesting Using Piezoelectric Plates in a Quarter-wavelength Straight-tube Resonator,” no. September, 2015. [29] H. Abdelmoula, N. Sharpes, A. Abdelkefi, H. Lee, and S. Priya, “Low-frequency Zigzag energy harvesters operating in torsion-dominant mode,” Appl. Energy, vol. 204, pp. 413–419, 2017. [30] M. Guan and W. H. Liao, “Design and analysis of a piezoelectric energy harvester for rotational motion system,” Energy Convers. Manag., vol. 111, pp. 239–244, 2016. [31] M. A. Pillai and E. Deenadayalan, “A review of acoustic energy harvesting,” Int. J. Precis. Eng. Manuf., vol. 15, no. 5, pp. 949–965, 2014. [32] Z. Zhou, W. Qin, and P. Zhu, “Harvesting acoustic energy by coherence resonance of a bi-stable piezoelectric harvester,” Energy, vol. 126, pp. 527–534, 2017. 61 [33] Z. Hu, C. Yang, and L. Cheng, “Acoustic resonator tuning strategies for the narrowband noise control in an enclosure,” Appl. Acoust., vol. 134, no. December 2017, pp. 88–96, 2018. [34] M. Yuan, Z. Cao, J. Luo, J. Zhang, and C. Chang, “An efficient low-frequency acoustic energy harvester,” Sensors Actuators, A Phys., vol. 264, pp. 84–89, 2017. [35] S. Noh, H. Lee, and B. Choi, “A study on the acoustic energy harvesting with Helmholtz resonator and piezoelectric cantilevers,” Int. J. Precis. Eng. Manuf., vol. 14, no. 9, pp. 1629–1635, 2013. [36] C. B. Williams and R. B. Yates, “Analysis of a micro-electric generator for microsystems,” Sensors Actuators, A Phys., vol. 52, no. 1–3, pp. 8–11, 1996. [37] H. Zhao et al., “Dual-Tube Helmholtz Resonator-Based Triboelectric Nanogenerator for Highly Efficient Harvesting of Acoustic Energy,” Adv. Energy Mater., vol. 9, no. 46, pp. 1–10, 2019. [38] A. Ballato, “Dynamic Admittance Matrix of Piezoelectric Cantilever Bimorphs,” J. Microelectromechanical Syst., vol. 3, no. 3, pp. 105–112, 1994. [39] S. Roundy and P. K. Wright, “A piezoelectric vibration based generator for wireless electronics,” Smart Mater. Struct., vol. 13, no. 5, pp. 1131–1142, 2004. [40] Leonard Meirovitch, “Elements of Vibration Analysis,” McGraw-Hill. 1975. [41] Y. Wang et al., “A renewable low-frequency acoustic energy harvesting noise barrier for high-speed railways using a Helmholtz resonator and a PVDF film,” Appl. Energy, vol. 230, no. April, pp. 52–61, 2018. [42] О. Р. Ш. И. В. И. О.В.Ковалишина, “Опыт аудита обеспечения качества и безопасности медицинской деятельности в медицинской организации по разделу «Эпидемиологическая безопасностьNo Title,” Вестник Росздравнадзора, vol. 4, no. May, pp. 9–15, 2017. [43] R. T. Sataloff, M. M. Johns, and K. M. Kost, No 主観的健康感を中心とした在宅高齢者における 健康関連指標に関する共分散構造分析Title. . [44] F. U. Khan and I. Izhar, “Electromagnetic-based acoustic energy harvester,” 2013 16th Int. 62 Multi Top. Conf. INMIC 2013, pp. 125–130, 2013. en_US
dc.identifier.uri http://hdl.handle.net/123456789/1260
dc.description Supervised by Prof. Dr. Md. Anayet Ullah Patwari, Head, Department of Mechanical and Production Engineering (MPE), Islamic University of Technology(IUT), Board Bazar, Gazipur, Dhaka, Bangladesh. en_US
dc.description.abstract Acoustic energy harvesting has been the main attraction for many researchers because of energy scarcity. Low-frequency energy harvesting is a highly complicated process. However, the physical characteristics of piezoelectric materials can be utilized to extract energy from low-frequency acoustic or vibration-based waves. In this study, experiments have been conducted on acoustic energy harvesting from low-frequency sound sources using Helmholtz resonator with single and double PZT film configurations. Based on the results obtained from the experiment it is clear that double film configuration is better for the purpose. Under the condition of 100Hz constant frequency single film configuration has been able to give 80.2 mV whereas for double film configuration the value of output voltage was 237.6 mV. A rectifying circuit was simulated using commercial software which is run by the output of the noise barrier. The noise barrier of the double film configuration can produce a total power of 268.8 mW where one film configuration has a total power output of 136.77 mW. Modified Helmholtz resonator noise barrier of double film configuration can be used to power up low power-consuming devices and greatly applicable for noise reduction in big cities and industrial areas. en_US
dc.language.iso en en_US
dc.publisher Department of Mechanical and Production Engineering (MPE),Islamic University of Technology(IUT), Board Bazar, Gazipur, Bangladesh en_US
dc.subject Acoustic energy harvesting; Cantilever beam; Helmholtz Resonator; PZT film; Metro rail; Noise barrier en_US
dc.title Experimental study on acoustic energy harvesting using single and double PZT film configuration in Helmholtz resonator en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics