Techno-economic and Feasibility Analysis of a Thermo-chemical Waste to Energy Conversion Technology from the Perspective of Dhaka City, Bangladesh

Show simple item record

dc.contributor.author Hossain, Mohammad Masrur
dc.contributor.author Inan, Md. Navid
dc.date.accessioned 2022-01-18T06:25:49Z
dc.date.available 2022-01-18T06:25:49Z
dc.date.issued 2021-03-30
dc.identifier.citation [1] JICA - (Japan International Cooperation Agency), “The study on the solid waste management in dhaka city-clean Dhaka master plan,” no. March 2005, pp. 1–98, 2005, doi: 10.1016/j.cca.2007.10.006. [2] K. M. N. Islam, “Municipal Solid Waste to Energy Generation in Bangladesh: Possible Scenarios to Generate Renewable Electricity in Dhaka and Chittagong City,” J. Renew. Energy, vol. 2016, pp. 1–16, 2016, doi: 10.1155/2016/1712370. [3] M. Ben Brahim and M. Thiry, “Un piemont detritique a silicifications differenciees: Les Hamadas tertiaires de Boudenib-Guir (Maroc),” Zeitschrift fur Geomorphol. Suppl., vol. 119, no. June, pp. 1–20, 1999. [4] T. M. I. Mahlia and P. A. A. Yanti, “Cost efficiency analysis and emission reduction by implementation of energy efficiency standards for electric motors,” J. Clean. Prod., vol. 18, no. 4, pp. 365–374, Mar. 2010, doi: 10.1016/j.jclepro.2009.11.005. [5] A. B. M. A. Malek, M. Hasanuzzaman, N. A. Rahim, and Y. A. Al Turki, “Techno-economic analysis and environmental impact assessment of a 10 MW biomass-based power plant in Malaysia,” J. Clean. Prod., vol. 141, no. 2017, pp. 502–513, 2017, doi: 10.1016/j.jclepro.2016.09.057. [6] I. F. S. dos Santos, A. T. T. Gonçalves, P. B. Borges, R. M. Barros, and R. da Silva Lima, “Combined use of biogas from sanitary landfill and wastewater treatment plants for distributed energy generation in Brazil,” Resour. Conserv. Recycl., vol. 136, no. April, pp. 376–388, 2018, doi: 80 10.1016/j.resconrec.2018.05.011. [7] A. U. Zaman, “Comparative study of municipal solid waste treatment technologies using life cycle assessment method,” Int. J. Environ. Sci. Technol., vol. 7, no. 2, pp. 225–234, Mar. 2010, doi: 10.1007/BF03326132. [8] L. G. Basics, “Landfill Gas Basics Cdc 2001.Pdf.” [9] F. C. Dalmo et al., “Energy recovery overview of municipal solid waste in São Paulo State, Brazil,” J. Clean. Prod., vol. 212, pp. 461–474, Mar. 2019, doi: 10.1016/j.jclepro.2018.12.016. [10] G. Review and S. W. Management, “A Global Review of Solid Waste Management,” World Bank Urban Dev. Ser. Knowl. Pap., pp. 1–116, 2012. [11] Global Waste Management Outlook. 2016. [12] L. A. Hadidi and M. M. Omer, “A financial feasibility model of gasification and anaerobic digestion waste-to-energy (WTE) plants in Saudi Arabia,” Waste Manag., vol. 59, pp. 90–101, 2017, doi: 10.1016/j.wasman.2016.09.030. [13] R. Mambeli Barros, G. L. Tiago Filho, and T. R. da Silva, “The electric energy potential of landfill biogas in Brazil,” Energy Policy, vol. 65, pp. 150–164, Feb. 2014, doi: 10.1016/j.enpol.2013.10.028. [14] H. Dhar, S. Kumar, and R. Kumar, “A review on organic waste to energy systems in India,” Bioresource Technology, vol. 245. Elsevier Ltd, pp. 1229–1237, Dec. 01, 2017, doi: 10.1016/j.biortech.2017.08.159. [15] H. R. Amini, D. R. Reinhart, and K. R. Mackie, “Determination of first-order landfill gas modeling parameters and uncertainties,” Waste Manag., vol. 32, no. 2, pp. 305–316, Feb. 2012, doi: 10.1016/j.wasman.2011.09.021. 81 [16] “Important Things to Know About Landfill Gas.” https://www.health.ny.gov/environmental/outdoors/air/landfill_gas.htm (accessed Sep. 26, 2020). [17] “(No Title).” http://www.indiaenvironmentportal.org.in/files/Assessment of methane emission.pdf (accessed Sep. 26, 2020). [18] A. Johari, S. I. Ahmed, H. Hashim, H. Alkali, and M. Ramli, “Economic and environmental benefits of landfill gas from municipal solid waste in Malaysia,” Renewable and Sustainable Energy Reviews, vol. 16, no. 5. Pergamon, pp. 2907–2912, Jun. 01, 2012, doi: 10.1016/j.rser.2012.02.005. [19] F. Cherubini, S. Bargigli, and S. Ulgiati, “Life cycle assessment (LCA) of waste management strategies: Landfilling, sorting plant and incineration,” Energy, vol. 34, no. 12, pp. 2116–2123, Dec. 2009, doi: 10.1016/j.energy.2008.08.023. [20] N. Marchettini, R. Ridolfi, and M. Rustici, “An environmental analysis for comparing waste management options and strategies,” Waste Manag., vol. 27, no. 4, pp. 562–571, Jan. 2007, doi: 10.1016/j.wasman.2006.04.007. [21] A. Emery, A. Davies, A. Griffiths, and K. Williams, “Environmental and economic modelling: A case study of municipal solid waste management scenarios in Wales,” Resour. Conserv. Recycl., vol. 49, no. 3, pp. 244–263, Jan. 2007, doi: 10.1016/j.resconrec.2006.03.016. [22] A. U. Zaman, “Comparative study of municipal solid waste treatment technologies using life cycle assessment method,” Int. J. Environ. Sci. Technol., vol. 7, no. 2, pp. 225–234, Mar. 2010, doi: 10.1007/BF03326132. 82 [23] S. Shafiee and E. Topal, “When will fossil fuel reserves be diminished?,” Energy Policy, vol. 37, no. 1, pp. 181–189, Jan. 2009, doi: 10.1016/j.enpol.2008.08.016. [24] R. Kothari, V. V. Tyagi, and A. Pathak, “Waste-to-energy: A way from renewable energy sources to sustainable development,” Renewable and Sustainable Energy Reviews, vol. 14, no. 9. Elsevier Ltd, pp. 3164–3170, Dec. 01, 2010, doi: 10.1016/j.rser.2010.05.005. [25] R. Bove, P. L.-E. conversion and management, and undefined 2006, “Electric power generation from landfill gas using traditional and innovative technologies,” Elsevier, Accessed: Oct. 01, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0196890405002153. [26] T. Bin Anwar, B. Behrose, and S. Ahmed, “Utilization of textile sludge and public health risk assessment in Bangladesh,” Sustain. Environ. Res., vol. 28, no. 5, pp. 228–233, 2018, doi: 10.1016/j.serj.2018.04.003. [27] M. S. Islam, M. K. Ahmed, M. Raknuzzaman, M. Habibullah-Al-Mamun, and G. K. Kundu, “Heavy metals in the industrial sludge and their ecological risk: A case study for a developing country,” J. Geochemical Explor., vol. 172, pp. 41–49, Jan. 2017, doi: 10.1016/j.gexplo.2016.09.006. [28] Y. C. Chen, “Evaluating greenhouse gas emissions and energy recovery from municipal and industrial solid waste using waste-to-energy technology,” J. Clean. Prod., vol. 192, pp. 262–269, 2018, doi: 10.1016/j.jclepro.2018.04.260. [29] I. Enayetullah, A. H. M. M. Sinha, and I. Lehtonen, “Bangladesh Waste Database 2014,” pp. 1–19, 2014. 83 [30] “Anthropogenic and natural radiative forcing,” in Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, vol. 9781107057, Cambridge University Press, 2013, pp. 659–740. [31] S. Lee, J. Kim, and W. K. O. Chong, “The causes of the municipal solid waste and the greenhouse gas emissions from the waste sector in the United States,” Waste Manag., vol. 56, pp. 593–599, Oct. 2016, doi: 10.1016/j.wasman.2016.07.022. [32] R. E. dos Santos, I. F. S. dos Santos, R. M. Barros, A. P. Bernal, G. L. Tiago Filho, and F. das G. B. da Silva, “Generating electrical energy through urban solid waste in Brazil: An economic and energy comparative analysis,” J. Environ. Manage., vol. 231, no. April 2018, pp. 198–206, 2019, doi: 10.1016/j.jenvman.2018.10.015. [33] M. M. Hoque and M. T. U. Rahman, “Landfill area estimation based on solid waste collection prediction using ANN model and final waste disposal options,” J. Clean. Prod., vol. 256, p. 120387, 2020, doi: 10.1016/j.jclepro.2020.120387. [34] “Sewage, effluent pollute Dhaka rivers at 577 spots: study.” https://www.newagebd.net/article/102537/sewage-effluent-pollute-dhaka-rivers-at-577-spots-study (accessed Dec. 10, 2020). [35] M. R. Azom, K. Mahmud, S. M. Yahya, A. Sontu, and S. B. Himon, “Environmental Impact Assessment of Tanneries: A Case Study of Hazaribag in Bangladesh,” Int. J. Environ. Sci. Dev., pp. 152–156, 2012, doi: 10.7763/ijesd.2012.v3.206. 84 [36] M. R. Hasan, K. Tetsuo, and S. A. Islam, “Landfill demand and allocation for municipal solid waste disposal in Dhaka city — an assessment in a GIS environment,” J. Civ. Eng., vol. 37, no. 2, pp. 133–149, 2009. [37] A. Matter, M. Dietschi, and C. Zurbrügg, “Improving the informal recycling sector through segregation of waste in the household - The case of Dhaka Bangladesh,” Habitat Int., vol. 38, pp. 150–156, 2013, doi: 10.1016/j.habitatint.2012.06.001. [38] K. M. N. Islam, “Greenhouse gas footprint and the carbon flow associated with different solid waste management strategy for urban metabolism in Bangladesh,” Sci. Total Environ., vol. 580, pp. 755–769, 2017, doi: 10.1016/j.scitotenv.2016.12.022. [39] K. Mahmud, M. D. Hossain, and S. Shams, “Different treatment strategies for highly polluted landfill leachate in developing countries,” Waste Manag., vol. 32, no. 11, pp. 2096–2105, 2012, doi: 10.1016/j.wasman.2011.10.026. [40] M. A. I. Juel, A. Mizan, and T. Ahmed, “Sustainable use of tannery sludge in brick manufacturing in Bangladesh,” Waste Manag., vol. 60, pp. 259–269, 2017, doi: 10.1016/j.wasman.2016.12.041. [41] P. H. Brunner and H. Rechberger, “Waste to energy – key element for sustainable waste management,” WASTE Manag., 2014, doi: 10.1016/j.wasman.2014.02.003. [42] A. Kumar and S. R. Samadder, “A review on technological options of waste to energy for effective management of municipal solid waste,” Waste Manag., vol. 69, pp. 407–422, 2017, doi: 10.1016/j.wasman.2017.08.046. 85 [43] IRENA, Renewable Energy Statistics 2016 Statistiques D ’ Énergie Renouvelable 2016 Estadísticas De Energía. 2016. [44] S. Dasanayaka and G. Wedawatta, “Economic and financial feasibility risks of power generation through municipal solid wastes to reduce environmental impacts, a case study based on Western Province in Sri Lanka,” http://iasir.net/IJETCASpapers/IJETCAS14-326.pdf, 2014. [45] S. Rathi, “Alternative approaches for better municipal solid waste management in Mumbai, India,” Waste Manag., vol. 26, no. 10, pp. 1192–1200, Jan. 2006, doi: 10.1016/j.wasman.2005.09.006. [46] K. F. Shariar and H. Al Bustam, “Waste to energy: A new dimension in generating electricity in Bangladesh,” in WCSE 2012 - International Workshop on Computer Science and Engineering, 2012, pp. 480–483, doi: 10.7763/ijet.2012.v4.415. [47] A. V. Shekdar, “Sustainable solid waste management: An integrated approach for Asian countries,” Waste Manag., vol. 29, no. 4, pp. 1438–1448, Apr. 2009, doi: 10.1016/j.wasman.2008.08.025. [48] D. Moya, C. Aldás, D. Jaramillo, E. Játiva, and P. Kaparaju, “Waste-To-Energy Technologies: An opportunity of energy recovery from Municipal Solid Waste, using Quito - Ecuador as case study,” Energy Procedia, vol. 134, pp. 327–336, 2017, doi: 10.1016/j.egypro.2017.09.537. [49] P. Albores, K. Petridis, and P. K. Dey, “Analysing Efficiency of Waste to Energy Systems: Using Data Envelopment Analysis in Municipal Solid Waste Management,” Procedia Environ. Sci., vol. 35, pp. 265–278, Jan. 2016, doi: 10.1016/j.proenv.2016.07.007. 86 [50] Y. C. Chen and S. L. Lo, “Evaluation of greenhouse gas emissions for several municipal solid waste management strategies,” J. Clean. Prod., vol. 113, pp. 606–612, Feb. 2016, doi: 10.1016/j.jclepro.2015.11.058. [51] J. M. Fernández-González, A. L. Grindlay, F. Serrano-Bernardo, M. I. Rodríguez-Rojas, and M. Zamorano, “Economic and environmental review of Waste-to-Energy systems for municipal solid waste management in medium and small municipalities,” Waste Manag., vol. 67, pp. 360–374, Sep. 2017, doi: 10.1016/j.wasman.2017.05.003. [52] B. Baran, M. S. Mamis, and B. B. Alagoz, “Utilization of energy from waste potential in Turkey as distributed secondary renewable energy source,” Renew. Energy, vol. 90, pp. 493–500, May 2016, doi: 10.1016/j.renene.2015.12.070. [53] H. Scharff and J. Jacobs, “Applying guidance for methane emission estimation for landfills,” Waste Manag., vol. 26, no. 4, pp. 417–429, 2006, doi: 10.1016/j.wasman.2005.11.015. [54] “2006 IPCC Guidelines for National Greenhouse Gas Inventories (Miscellaneous) | ETDEWEB.” https://www.osti.gov/etdeweb/biblio/20880391 (accessed May 19, 2020). [55] C. A. N.-E. S. e Ambiental and undefined 2006, “Tratamento de esgotos domésticos. Introdução à qualidade das águas e ao tratamento de esgotos,” SciELO Bras., Accessed: Dec. 10, 2020. [Online]. Available: https://www.scielo.br/scielo.php?pid=S1413-41522006000100001&script=sci_arttext. [56] H. A. Arafat, K. Jijakli, and A. Ahsan, “Environmental performance and energy recovery potential of five processes for municipal solid waste 87 treatment,” J. Clean. Prod., vol. 105, pp. 233–240, Oct. 2015, doi: 10.1016/j.jclepro.2013.11.071. [57] N. J. Themelis and P. A. Ulloa, “Methane generation in landfills,” Renew. Energy, vol. 32, no. 7, pp. 1243–1257, 2007, doi: 10.1016/j.renene.2006.04.020. [58] “Landfill Technology - John F Crawford, Paul G Smith - Google Books.” https://books.google.com.bd/books?hl=en&lr=&id=3GaEDAAAQBAJ&oi=fnd&pg=PP1&dq=Crawford+JF+and+Smith+PG.+1985.+Landfill+technology.+London:+Butterworths.&ots=xZNWNJz0rP&sig=WpCSef5G3EbMbdBOj87gI9tyFOc&redir_esc=y#v=onepage&q&f=false (accessed Oct. 05, 2020). [59] I. R. E. Agency, Renewable Power Generation Costs in 2018. 2018. [60] I. Renewable Energy Agency, “Renewable Power Generation Costs in 2012: An Overview,” 2013. [61] BIGD, Sate of Cities: Solid Waste Management of Dhaka City – Towards Decentralised Governance, no. June 2015. 2015. [62] “Solid-fuel firing,” in The Efficient Use of Energy, Elsevier, 1982, pp. 64–92. [63] H. Cheng and Y. Hu, “Bioresource Technology Municipal solid waste ( MSW ) as a renewable source of energy : Current and future practices in China,” Bioresour. Technol., vol. 101, no. 11, pp. 3816–3824, 2010, doi: 10.1016/j.biortech.2010.01.040. [64] O. Gohlke, “Drivers for innovation in waste-to-energy technology,” pp. 214–219, 2007, doi: 10.1177/0734242X07079146. [65] J. D. Nixon, P. K. Dey, S. K. Ghosh, and P. A. Davies, “Evaluation of options 88 for energy recovery from municipal solid waste in India using the hierarchical analytical network process,” Energy, pp. 1–9, 2013, doi: 10.1016/j.energy.2013.06.052. [66] L. Lombardi, E. Carnevale, and A. Corti, “A review of technologies and performances of thermal treatment systems for energy recovery from waste,” WASTE Manag., 2014, doi: 10.1016/j.wasman.2014.11.010. [67] DNCC, “Dhaka North City coorporation Waste Report 2016-2017.” pp. 1–11, 2016. [68] “XE: Convert BDT/USD. Bangladesh Taka to United States Dollar.” . [69] H. Cheng and Y. Hu, “Author’s personal copy Review Municipal solid waste (MSW) as a renewable source of energy: Current and future practices in China,” doi: 10.1016/j.biortech.2010.01.040. [70] “Retail power tariff hiked by 5.3 percent; to be effective from March 1.” . [71] S. Gaur and T. B. Reed, “An atlas of thermal data for biomass and other fuels,” Golden, CO, Jun. 1995. doi: 10.2172/82384. [72] V. K. Verma et al., “Agro-pellets for domestic heating boilers: Standard laboratory and real life performance,” Appl. Energy, vol. 90, no. 1, pp. 17–23, Feb. 2012, doi: 10.1016/j.apenergy.2010.12.079. [73] X. Q. Kong, R. Z. Wang, and X. H. Huang, “Energy efficiency and economic feasibility of CCHP driven by stirling engine,” Energy Convers. Manag., vol. 45, no. 9–10, pp. 1433–1442, Jun. 2004, doi: 10.1016/j.enconman.2003.09.009. [74] M. Hasanuzzaman, N. A. Rahim, R. Saidur, and S. N. Kazi, “Energy savings and emissions reductions for rewinding and replacement of industrial motor,” 89 Energy, vol. 36, no. 1, pp. 233–240, Jan. 2011, doi: 10.1016/j.energy.2010.10.046. [75] “Bangladesh CO2 Emissions - Worldometer.” https://www.worldometers.info/co2-emissions/bangladesh-co2-emissions/ (accessed Nov. 26, 2020). [76] T. M. I. Mahlia, “Emissions from electricity generation in Malaysia,” Renew. Energy, vol. 27, no. 2, pp. 293–300, Oct. 2002, doi: 10.1016/S0960-1481(01)00177-X. [77] “Aminbazar, the landfill that ruined lives | The Business Standard.” https://tbsnews.net/environment/aminbazar-landfill-ruined-lives-54643 (accessed Oct. 27, 2020). [78] D. North and C. Corporation, “< Dhaka North City Corporation >,” no. August, pp. 17–19, 2015. [79] B. Berg, “Comparison of Lifecycle Greenhouse Gas Emissions of Various Electricity Generation Sources,” undefined, 2010. [80] M. S. Alam, “Waste Management in Dhaka South City Corporation and Way Forward.” . [81] Bangladesh Bereau of Statistics, “District Statistics 2011 Dhaka District,” no. December, p. 103, 2013. [82] A. Gómez, J. Zubizarreta, M. Rodrigues, C. Dopazo, and N. Fueyo, “Potential and cost of electricity generation from human and animal waste in Spain,” Renew. Energy, vol. 35, no. 2, pp. 498–505, Feb. 2010, doi: 10.1016/j.renene.2009.07.027. 90 [83] A. B. Nabegu, “An Analysis of Municipal Solid Waste in Kano Metropolis, Nigeria,” J. Hum. Ecol., vol. 31, no. 2, pp. 111–119, Aug. 2010, doi: 10.1080/09709274.2010.11906301. [84] J. Babayemi and K. Dauda, “Evaluation of Solid Waste Generation, Categories and Disposal Options in Developing Countries: A Case Study of Nigeria,” J. Appl. Sci. Environ. Manag., vol. 13, no. 3, Jun. 2010, doi: 10.4314/jasem.v13i3.55370. [85] J. H. R. Mensah et al., “Assessment of electricity generation from biogas in Benin from energy and economic viability perspectives,” Renew. Energy, vol. 163, pp. 613–624, 2021, doi: 10.1016/j.renene.2020.09.014. [86] R. Ediene et al., “Generating electrical energy through urban solid waste in Brazil : An economic and energy comparative analysis,” J. Environ. Manage., vol. 231, no. October 2018, pp. 198–206, 2019, doi: 10.1016/j.jenvman.2018.10.015. [87] S. Qasim, Wastewater treatment plants: Planning, design, and operation, second edition. 2017. [88] BIGD, Sate of Cities: Solid Waste Management of Dhaka City – Towards Decentralised Governance, no. June 2015. 2015. [89] E. Jigar, A. Bairu, E. Jigar, A. Bairu, and A. Gesessew, “Application of IPCC model for estimation of methane from municipal solid waste landfill,” J. Environ. Sci. Water Resour., vol. 3, no. 4, pp. 52–58, 2014. [90] J. Hoeks, “Significance of Biogas Production in Waste Tips,” Waste Manag. Res., vol. 1, no. 1, pp. 323–335, Jan. 1983, doi: 91 10.1177/0734242X8300100142. [91] J. Tintner, M. Kühleitner, E. Binner, N. Brunner, and E. Smidt, “Modeling the final phase of landfill gas generation from long-term observations,” Biodegradation, vol. 23, no. 3, pp. 407–414, Jun. 2012, doi: 10.1007/s10532-011-9519-4. [92] “Intergovernmental Panel on Climate Change (IPCC), (1996). Report of the Twelfth Season of the Intergovernmental Panel on Climate Change, Mexico City, 11–13 September 1996. - Google Search.” . [93] “2006 IPCC Guidelines for National Greenhouse Gas Inventories — IPCC.” . [94] H. Oonk, “Methods to quantify generation, oxidation and emission,” Lit. Rev. methane from landfills, no. April, p. 75, 2010, doi: 10.1177/1350650113506570. [95] O. M. Amoo and R. L. Fagbenle, “Renewable municipal solid waste pathways for energy generation and sustainable development in the Nigerian context,” Int. J. Energy Environ. Eng., vol. 4, no. 1, pp. 1–17, Nov. 2013, doi: 10.1186/2251-6832-4-42. [96] “LANDFILL RECOVERY AND USE IN NIGERIA (PRE-FEASIBILITY STUDIES OF USING LFGE) FINAL REPORT Prepared for Methane-To-Markets Program,” 2010. [97] “Climate & Weather Averages in Dhaka, Bangladesh.” . [98] A. S. O. Ogunjuyigbe, T. R. Ayodele, and M. A. Alao, “Electricity generation from municipal solid waste in some selected cities of Nigeria: An assessment of feasibility, potential and technologies,” Renewable and Sustainable Energy 92 Reviews, vol. 80. Elsevier Ltd, pp. 149–162, 2017, doi: 10.1016/j.rser.2017.05.177. [99] A. Sil, S. Kumar, and R. Kumar, “Formulating LandGem model for estimation of landfill gas under Indian scenario,” Int. J. Environ. Technol. Manag., vol. 17, no. 2/3/4, pp. 293–299, 2014. [100] C. Ryu, “Potential of municipal solid waste for renewable energy production and reduction of greenhouse gas emissions in South Korea,” J. Air Waste Manag. Assoc., vol. 60, no. 2, pp. 176–183, 2010, doi: 10.3155/1047-3289.60.2.176. [101] “Landfill gas formation, recovery and emissions (Technical Report) | ETDEWEB.” . [102] G. P. Guidance, “CH 4 EM IS SI ONS FROM SO LID WA S TE D ISP OSA L,” pp. 419–439. [103] “CH 4 EMISSIONS FROM SOLID WASTE DISPOSAL ACKNOWLEDGEMENTS A B S T R A C T.” [104] S. W. Disposal, I. Guidelines, N. Greenhouse, and G. Inventories, “CHAPTER 3,” pp. 1–40, 2006. [105] S. Eggleston, L. Buendia, K. Miwa, T. Ngara, and K. Tanabe, 2006 IPCC guidelines for national greenhouse gas inventories. 2006. [106] C. O. de Andrade Neto, “Tratamento de esgotos domésticos. Introdução à qualidade das águas e ao tratamento de esgotos,” Eng. Sanit. e Ambient., vol. 11, no. 1, pp. 6–6, Mar. 2006, doi: 10.1590/s1413-41522006000100001. [107] A. Sharmin, “Water and wastewater in Bangladesh, current status and design of 93 a decentralized solution,” p. 72, 2016. [108] “World Bank Provides $170 million for Better Sanitation in Dhaka.” . [109] J. H. R. Mensah, A. R. de Souza, N. de S. Ribeiro, L. C. F. Freitas, A. T. Y. L. Silva, and R. M. Barros, “Potencial de aproveitamento energético de biogás através de reatores UASB: estudo de caso em Itaúna, Minas Gerais, Brasil,” Rev. Bras. Gestão Ambient. e Sustentabilidade, vol. 6, no. 14, pp. 609–621, Dec. 2019, doi: 10.21438/rbgas.061402. [110] M. M. V. Leme, M. H. Rocha, E. E. S. Lora, O. J. Venturini, B. M. Lopes, and C. H. Ferreira, “Techno-economic analysis and environmental impact assessment of energy recovery from Municipal Solid Waste (MSW) in Brazil,” Resour. Conserv. Recycl., vol. 87, pp. 8–20, Jun. 2014, doi: 10.1016/j.resconrec.2014.03.003. [111] I. F. S. dos Santos, R. M. Barros, and G. L. Tiago Filho, “Economic study on LFG energy projects in function of the number of generators,” Sustain. Cities Soc., vol. 41, pp. 587–600, 2018, doi: 10.1016/j.scs.2018.04.029. [112] K. R. Salomon, E. E. S. Lora, M. H. Rocha, and O. A. Del Olmo, “Cost calculations for biogas from vinasse biodigestion and its energy utilization,” Zuckerindustrie, vol. 136, no. 4, pp. 217–223, Apr. 2011, doi: 10.36961/si11311. [113] A. P. Bernal, I. F. S. dos Santos, A. P. Moni Silva, R. M. Barros, and E. M. Ribeiro, “Vinasse biogas for energy generation in BrazilAn assessment of economic feasibility, energy potential and avoided CO2 emissions,” J. Clean. Prod., vol. 151, pp. 260–271, May 2017, doi: 10.1016/j.jclepro.2017.03.064. 94 [114] I. Renewable Energy Agency, “RENEWABLE ENERGY TECHNOLOGIES: COST ANALYSIS SERIES Biomass for Power Generation Acknowledgement,” 2012. [115] “Power System Expansion and Efficiency Improvement Investment Program (RRP BAN 42378).” [116] K. R. Hakeem, M. Jawaid, and U. Rashid, Biomass and bioenergy : applications. . [117] CDM Executive Board, “PROJECT DESIGN DOCUMENT FORM (CDM-SSC-PDD) Alibunar - Version 03, December 22,” no. December, pp. 1–63, 2006. [118] A. Demirbaş, “Biomass resource facilities and biomass conversion processing for fuels and chemicals,” Energy Convers. Manag., vol. 42, no. 11, pp. 1357–1378, Jul. 2001, doi: 10.1016/S0196-8904(00)00137-0. [119] Bangladesh Power Development Board (BPDB), “BPDB Annual Report 2014-15,” Bangladesh Power Development Board (BPDB). 2015, [Online]. Available: https://www.bpdb.gov.bd/bpdb_new/index.php/site/annual_reports/ddb5-f47c-cfbd-3b8d-8ec5-7bd9-09c2-1d70-7992-5841. [120] “বাাংলাদেশ ববেযুৎ উন্নয়ন ববার্ড.” https://www.bpdb.gov.bd/bpdb_new/index.php/site/power_generation_unit (accessed Jun. 29, 2020). [121] BPDB, “An Overview of Power Sector of Bangladesh,” Bangladesh Power Dev. Board, 2011, [Online]. Available: 95 https://www.usea.org/sites/default/files/event-file/493/overviewofbpdb.pdf. [122] “• Bangladesh- household electricity consumption per capita 2016 | Statista.” https://www.statista.com/statistics/598336/household-consumption-of-electricity-per-capita-in-bangladesh/ (accessed Nov. 25, 2020). [123] “Electricity prices to drop for industries! - Energy Bangla.” https://energybangla.com/electricity-prices-to-drop-for-industries/ (accessed Nov. 25, 2020). [124] M. Al Amin Hossain, M. Mahidul Haque Prodhan, M. Iqbal Hosan, M. Jafor Dewan, and M. Faisal Rahman, “A Probabilistic Analysis of Levelized Cost of Energy (LCOE) for Bangladesh,” 2018. [125] “CO2 emissions (metric tons per capita) - Bangladesh | Data.” https://data.worldbank.org/indicator/EN.ATM.CO2E.PC?locations=BD (accessed Nov. 26, 2020). [126] M. Mendes Pedroza, G. E. Gama Vieira, J. Fernandes de Sousa, A. de Castilho Pickler, E. R. Mendes Leal, and C. da Cruz Milhomen, “Produção e tratamento de lodo de esgoto – uma revisão,” Rev. Lib., vol. 11, no. 16, pp. 149–160, 2010, doi: 10.31514/rliberato.2010v11n16.p149. [127] H. Hondo and Y. Moriizumi, “Employment creation potential of renewable power generation technologies: A life cycle approach,” Renewable and Sustainable Energy Reviews, vol. 79. Elsevier Ltd, pp. 128–136, Nov. 01, 2017, doi: 10.1016/j.rser.2017.05.039. en_US
dc.identifier.uri http://hdl.handle.net/123456789/1261
dc.description Supervised by Dr. Mohammad Ahsan Habib, Professor, Department of Mechanical & Production Engineering (MPE), Islamic University of Technology(IUT), Board Bazar, Gazipur,Bangladesh. en_US
dc.description.abstract As a consequence of dynamic growth in its economy, Bangladesh has seen rapid urbanization in recent years. Dhaka, the capital of Bangladesh, serves as the economic, cultural, and educational center. Unfortunately, Dhaka has severe issues with its urban planning, and its unreliable waste management system results in waste accumulation in different neighborhoods. The generation of MSW is growing fast in Dhaka city as it is directly related with economic development and urbanization. Hence, the necessity of a comprehensive waste management system and the use of appropriate Waste to Energy Technologies (WTE) is a crying need in the present scenario of Dhaka city. Electricity generation concept comes as an alternative energy source. This concept of electricity generation utilizing municipal solid waste is highly encouraged in the national waste management policies of Bangladesh. But due to the lack of proper attention, this concept is still underdeveloped and requires more improvement. Under this consideration, the purpose of this study is to evaluate the energy generation potential, the economic viability, and the environmental impact of a municipal solid waste-based incineration WTE conversion power plant in Dhaka city. In the second study, we have analyzed the energy generation potential of biogas collected from landfills and sewage treatment plants in Dhaka city. Energy potential for six scenarios was analyzed along with economic analysis. To do so, waste collection prediction was conducted. IPCC model was used to calculate the biogas generated from landfills and Von Sperling's method to quantify biogas production from the sewage treatment plant. The best scenario was the combined use of biogas from both plants to produce electricity with a generation capacity of 21 MW and a payback period of 10.70 years. en_US
dc.language.iso en en_US
dc.publisher Department of Mechanical and Production Engineering (MPE),Islamic University of Technology(IUT), Board Bazar, Gazipur, Bangladesh en_US
dc.title Techno-economic and Feasibility Analysis of a Thermo-chemical Waste to Energy Conversion Technology from the Perspective of Dhaka City, Bangladesh en_US
dc.title.alternative Economic and environmental analysis of combined use of biogas generated from landfill and sewage treatment plant en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics