Optimized Design of an Off-Grid PTC Based Power Plant in Saint Martin’s Island

Show simple item record

dc.contributor.author Khairuzzaman, Md.
dc.contributor.author Islam, Md. Raihanul
dc.contributor.author Asef, S.M. Maheer
dc.date.accessioned 2022-01-19T09:30:45Z
dc.date.available 2022-01-19T09:30:45Z
dc.date.issued 2021-03-30
dc.identifier.citation [1] “https://www.iea.org/reports/world-energy-outlook-2020.” . [2] “http://www.renewableenergy.gov.bd/index.php?id=1&i=1.” . [3] M. M. Rhaman, “Hybrid renewable energy system for sustainable future of bangladesh,” Int. J. Renew. Energy Res., vol. 3, no. 4, pp. 777–780, 2013, doi: 10.20508/ijrer.20029. [4] N. Bhuiyan, W. Ullah, R. Islam, T. Ahmed, and N. Mohammad, “Performance optimisation of parabolic trough solar thermal power plants–a case study in Bangladesh,” Int. J. Sustain. Energy, vol. 39, no. 2, pp. 113–131, 2020, doi: 10.1080/14786451.2019.1649263. [5] “https://latitude.to/articles-by-country/bd/bangladesh/10284/st-martins-island.” . [6] M. Kamruzzaman, “Assessment of Destination-specific factors of Bangladesh: A review of Saint Martin Island as an emerging Tourist Destination,” J. Bus. Stud., vol. XXXIX, no. 1, 2018. [7] “https://sam.nrel.gov/about-sam.html.” . [8] J. J. Burkhardt, G. A. Heath, and C. S. Turchi, “Life cycle assessment of a parabolic trough concentrating solar power plant and the impacts of key design alternatives,” Environ. Sci. Technol., vol. 45, no. 6, pp. 2457–2464, 2011, doi: 10.1021/es1033266. [9] H. Olia, M. Torabi, M. Bahiraei, M. H. Ahmadi, M. Goodarzi, and M. R. Safaei, “Application of nanofluids in thermal performance enhancement of parabolic trough solar collector: State-of-the-art,” Appl. Sci., vol. 9, no. 3, 2019, doi: 10.3390/app9030463. [10] H. Schenk, T. Hirsch, J. F. Feldhoff, and M. Wittmann, “Energetic comparison of linear Fresnel and parabolic trough collector systems,” J. Sol. Energy Eng. Trans. ASME, vol. 136, no. 4, pp. 1–11, 2014, doi: 10.1115/1.4027766. [11] G. Morin, M. Karl, M. Mertins, and M. Selig, “Molten Salt as a Heat Transfer Fluid in a Linear Fresnel Collector - Commercial Application Backed by Demonstration,” Energy Procedia, vol. 69, pp. 689–698, 2015, doi: 63 10.1016/j.egypro.2015.03.079. [12] W. M. Conlon, P. Johnson, and R. Hanson, “Superheated steam from CLFR solar steam generators,” in American Society of Mechanical Engineers, Power Division (Publication) POWER, Feb. 2011, vol. 1, no. 1, pp. 301–307, doi: 10.1115/POWER2011-55174. [13] T. Hirsch and A. Khenissi, “A systematic comparison on power block efficiencies for CSP plants with direct steam generation,” Energy Procedia, vol. 49, pp. 1165–1176, 2014, doi: 10.1016/j.egypro.2014.03.126. [14] C. Ortiz, M. Binotti, M. C. Romano, J. M. Valverde, and R. Chacartegui, “Offdesign model of concentrating solar power plant with thermochemical energy storage based on calcium-looping,” AIP Conf. Proc., vol. 2126, no. July, 2019, doi: 10.1063/1.5117755. [15] S. Relloso and E. García, “Tower Technology Cost Reduction Approach after Gemasolar Experience,” Energy Procedia, vol. 69, pp. 1660–1666, 2015, doi: 10.1016/j.egypro.2015.03.125. [16] Https://www.energy.gov/eere/solar/downloads/concentrating-solar-powertower- plant-illustration, “No Title.” . [17] Estela and A. T. Kearney, “Solar Thermal Electricity 2025,” Clean Electr. Demand Atractive STE Cost …, no. June, p. 52, 2010, [Online]. Available: estelasolar.eu/Publications. [18] O. (2005) Pitz-Paal, Robert and Dersch, Jürgen and Milow, Barbara and Téllez, Felix and Ferriere, Alain and Langnickel, Ulrich and Steinfeld, Aldo and Karni, Jacob and Zarza, Eduardo and Popel, “https://elib.dlr.de/46994/.” [19] Estela and A. T. Kearney, “Solar Thermal Electricity 2025,” Clean Electr. Demand Atractive STE Cost …, no. June, p. 52, 2010. [20] “https://webstore.iea.org/energy-technology-perspectives-2012.” [21] N. Noor and S. Muneer, “Concentrating Solar Power (CSP) and its prospect in Bangladesh,” Proc. 1st Int. Conf. Dev. Renew. Energy Technol. ICDRET 2009, pp. 69–73, 2009, doi: 10.1109/icdret.2009.5454207. 64 [22] “https://pmo.gov.bd/pmolib/legalms/pdf/2009-renewable-%20energy-policy.pdf.” . [23] “First 100 kW mini grid solar PV of Bangladesh.” [Online]. Available: http://energysystemsbd.com/portfolio.html#100kw_minigrid. [24] “IDCOL Renewable Energy projects.” [Online]. Available: http://www.idcol.org/old/documentation.php. [25] K. A. Khan and S. R. Rasel, “Prospects of renewable energy with respect to energy reserve in Bangladesh,” Publ. J. IJARII, no. 5, pp. 280–289, 2018, [Online]. Available: https://www.academia.edu/download/57482260/Prospects_of_Renewable_Energy_with_Respect_to_Energy_Reserve_in_Bangladesh_ijariie9090.pdf. [26] S. Mistry, Prospect of solar energy use in bangladesh. 2009. [27] K. A. Khan, M. S. Hossain, M. M. Kamal, and ..., “Pathor Kuchi leaf: importance in power production,” Ijariie-Issn (O)-2395 …, no. September 2020, 2018, [Online]. Available: http://www.academia.edu/download/57589381/Pathor_Kuchi_Leaf_Importance_in_Power_Production.pdf. [28] K. A. Khan et al., “Renewable energy scenario in Bangladesh,” Ijarii, vol. 4, no. 5, pp. 270–279, 2018. [29] A. D. D. Mahmud, “Prospects of Solar Energy in Bangladesh,” IOSR J. Electr. Electron. Eng., vol. 4, no. 5, pp. 46–57, 2013, doi: 10.9790/1676-0454657. [30] M. M. Karim, M. Anis-Uz-Zaman, A. T. Noman, H. Rashid, M. Z. Al Imran, and K. A. Al Mamun, “Feasibility Analysis and a Proposal for 1.3 MW Hybrid Renewable Power Plant for Saint-Martins Island Using HOMER,” 2nd Int. Conf. Electr. Comput. Commun. Eng. ECCE 2019, pp. 1–6, 2019, doi: 10.1109/ECACE.2019.8679390. [31] K. Foysal Haque, N. Saqib, and M. S. Rahman, “An optimized stand-alone green hybrid grid system for an offshore Island, Saint Martin, Bangladesh,” Int. Conf. Energy Power Eng. Power Progress, ICEPE 2019, pp. 1–5, 2019, doi: 10.1109/CEPE.2019.8726596. 65 [32] M. A. H. Mondal and M. Denich, “Assessment of renewable energy resources potential for electricity generation in Bangladesh,” Renew. Sustain. Energy Rev., vol. 14, no. 8, pp. 2401–2413, 2010, doi: 10.1016/j.rser.2010.05.006. [33] “T. Khadem, S. M. B. Billah, S. Barua and M. S. Hossain, ‘HOMER based hydrogen fuel cell system design for irrigation in Bangladesh,’ 2017 4th International Conference on Advances in Electrical Engineering (ICAEE), Dhaka, Bangladesh, 2017, pp. 445-449, doi.” [34] S. Roy and M. M. Rhaman, “Hybrid Solar Power Plant in Saint Martin’s Island can Enlarge Tourist Attraction in Bangladesh,” I.J. Eng. Manuf., vol. 3, no. May, pp. 12–22, 2016, doi: 10.5815/ijem.2016.03.02. [35] E. E. Feasibility and I. Costs, “Cost Analysis for Pollution Prevention,” no. 95, pp. 1–6, 2005. [36] “Mahmud Abdul Matin Bhuiyan, Anik Deb and Arefin Nasir. Article: Optimum Planning of Hybrid Energy System using HOMER for Rural Electrification. International Journal of Computer Applications 66(13):45-52, March 2013. Full text available. BibTeX.” [37] U. S. Mousumi, A. Zardar, and K. Z. Islam, “Techno-Economic Evaluation of Hybrid Supply System for Sustainable Powering the Saint Martin Island in Bangladesh,” vol. 1, no. 1, 2020. [38] M. B. M. Fardun, K. S. I. Sunny, and M. D. A. Satter, “Modelling and Optimization of Hybrid Power System at Coastal Area,” 2nd Int. Conf. Electr. Comput. Commun. Eng. ECCE 2019, pp. 1–6, 2019, doi: 10.1109/ECACE.2019.8679410. [39] A. K. M. Sadrul Islam, M. M. Rahman, M. A. H. Mondal, and F. Alam, “Hybrid energy system for St. Martin island, Bangladesh: An optimized model,” Procedia Eng., vol. 49, no. March 2014, pp. 179–188, 2012, doi: 10.1016/j.proeng.2012.10.126. [40] 2019 Goleman et al., “Design of Solar Field and Performance Estimation of Solar Tower Plants,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2019. [41] S. A. Kalogirou, “A detailed thermal model of a parabolic trough collector 66 receiver,” Energy, vol. 48, no. 1, pp. 298–306, 2012, doi: 10.1016/j.energy.2012.06.023. [42] M. Chaanaoui, S. Vaudreuil, and T. Bounahmidi, “Benchmark of Concentrating Solar Power Plants: Historical, Current and Future Technical and Economic Development,” Procedia Comput. Sci., vol. 83, no. Seit, pp. 782–789, 2016, doi: 10.1016/j.procs.2016.04.167. [43] A. Gil et al., “State of the art on high temperature thermal energy storage for power generation. Part 1-Concepts, materials and modellization,” Renew. Sustain. Energy Rev., vol. 14, no. 1, pp. 31–55, 2010, doi: 10.1016/j.rser.2009.07.035. [44] A. I. Fernandez, M. Martnez, M. Segarra, I. Martorell, and L. F. Cabeza, “Selection of materials with potential in sensible thermal energy storage,” Sol. Energy Mater. Sol. Cells, vol. 94, no. 10, pp. 1723–1729, 2010, doi: 10.1016/j.solmat.2010.05.035. [45] D. Barlev, R. Vidu, and P. Stroeve, “Innovation in concentrated solar power,” Sol. Energy Mater. Sol. Cells, vol. 95, no. 10, pp. 2703–2725, 2011, doi: 10.1016/j.solmat.2011.05.020. [46] D. Fernandes, F. Pitié, G. Cáceres, and J. Baeyens, “Thermal energy storage: ‘How previous findings determine current research priorities,’” Energy, vol. 39, no. 1, pp. 246–257, 2012, doi: 10.1016/j.energy.2012.01.024. [47] N. Nallusamy, S. Sampath, and R. Velraj, “Experimental investigation on a combined sensible and latent heat storage system integrated with constant/varying (solar) heat sources,” Renew. Energy, vol. 32, no. 7, pp. 1206–1227, 2007, doi: 10.1016/j.renene.2006.04.015. [48] A. H. Abedin, “A Critical Review of Thermochemical Energy Storage Systems,” Open Renew. Energy J., vol. 4, no. 1, pp. 42–46, 2011, doi: 10.2174/1876387101004010042. [49] D. Aydin, S. P. Casey, and S. Riffat, “The latest advancements on thermochemical heat storage systems,” Renew. Sustain. Energy Rev., vol. 41, pp. 356–367, 2015, doi: 10.1016/j.rser.2014.08.054. 67 [50] U. Herrmann, B. Kelly, and H. Price, “Two-tank molten salt storage for parabolic trough solar power plants,” Energy, vol. 29, no. 5–6, pp. 883–893, 2004, doi: 10.1016/S0360-5442(03)00193-2. [51] R. I. Dunn, P. J. Hearps, and M. N. Wright, “Molten-salt power towers: Newly commercial concentrating solar storage,” Proc. IEEE, vol. 100, no. 2, pp. 504–515, 2012, doi: 10.1109/JPROC.2011.2163739. [52] V. Christensen, “Ecopath with Ecosim: linking fi sheries and ecology 1 Why ecosystem modeling in fi sheries?,” WIT Trans. State Art Sci. Eng., vol. 34, pp. 1755–8336, 2009, doi: 10.2495/978-1-84564. [53] M. J. Wagner and P. Gilman, “Technical manual for the SAM physical trough model, by National Renewable Energy Laboratory (NREL, U.S. Department of Energy),” Natl. Renew. Energy Lab., vol. 303, no. June, pp. 275–3000, 2011, [Online]. Available: http://www.nrel.gov/docs/fy11osti/51825.pdf. [54] J. A. Duffie (Deceased), W. A. Beckman, and N. Blair, Solar Engineering of Thermal Processes, Photovoltaics and Wind. 2020. [55] “http://helioscsp.com/sqms-concentrated-solar-power-csp-thermo-solar-salts/.” [56] F. Burkholder and C. F. Kutscher, “Heat loss testing of Schott’s 2008 PTR70 parabolic trough receiver,” NREL Tech. Rep., no. May, p. 58, 2009, [Online]. Available: http://www.nrel.gov/docs/fy09osti/45633.pdf. [57] H. Price, “A Parabolic Trough Solar Power Plant Simulation Model Preprint, NREL/CP-550-33209,” ISES 2003 Int. Sol. Energy Conf., no. January, 2003. [58] Https://re.jrc.ec.europa.eu/pvg_tools/en/tools.html#TMY, “No Title.” en_US
dc.identifier.uri http://hdl.handle.net/123456789/1268
dc.description Supervised by Dr. Md. Rezwanul Karim, Assistant Professor, Department of Mechanical and Production Engineering (MPE), Islamic University of Technology (IUT), Board Bazar, Gazipur-1704, Bangladesh en_US
dc.description.abstract Solar energy is one of the key renewable energy sources of the globe and can be converted into power by using different technologies and approaching various methodologies. As a remote island and being disconnected from the national power grid, Saint Martin’s island in Bangladesh is one of the best prospects for mass scale usage of solar power. Solar energy can be converted to electrical power by two distinct processes namely Photovoltaic (PV) conversion and Concentrating Solar Power (CSP) using thermodynamic cycles. Concentrating Solar Power (CSP) is thought of as one of the major future alternatives in the field of harvesting solar energy. It has advantages over the PV cells in terms of efficiency and lifetime. Using thermal storage technology integrated with the CSP plant, about 6 to 12 hours of power backup can be gained in ideal conditions. In this study, a 1 MW parabolic trough collector (PTC) based stand-alone CSP power plant with 12 hours of thermal storage has been specifically designed and optimized for Saint Martin’s island using System Advisor Model (SAM). The design point DNI value selected for the specified location is 852 W/m2. The gross power cycle output for the optimized plant is calculated to be 2.68 GWh with a power cycle efficiency 40.58%. The total land area needed for the proposed design plant is 7.83 acres which covers only 1.08% of the total land area of this island. The proposed design of the PTC based thermal power plant resolves the power generation problem of a disconnected island of the country which will in turn develop the daily life of locals along with making the travelling experience smoother for the tourists. The performance analysis of the plant also encourages development and innovation of solar thermal power plants in Bangladesh. en_US
dc.language.iso en en_US
dc.publisher Department of Mechanical and Production Engineering (MPE),Islamic University of Technology(IUT), Board Bazar, Gazipur, Bangladesh en_US
dc.title Optimized Design of an Off-Grid PTC Based Power Plant in Saint Martin’s Island en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics