dc.identifier.citation |
[1] W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, vol. 424, pp. 824-830, 2003. [2] S. A. Maier, Plasmonics: fundamentals and applications: Springer Science & Business Media, 2007. [3] D. K. Gramotnev and S. I. Bozhevolnyi, "Plasmonics beyond the diffraction limit," Nature photonics, vol. 4, pp. 83-91, 2010. [4] R. J. Blaikie and D. O. Melville, "Imaging through planar silver lenses in the optical near field," Journal of Optics A: Pure and Applied Optics, vol. 7, p. S176, 2005. [5] D. Melville and R. Blaikie, "Super-resolution imaging through a planar silver layer," Optics Express, vol. 13, pp. 2127-2134, 2005. [6] A. Hosseini and Y. Massoud, "A low-loss metal-insulator-metal plasmonic bragg reflector," Optics express, vol. 14, pp. 11318-11323, 2006. [7] A. J. Haes and R. P. Van Duyne, "A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles," Journal of the American Chemical Society, vol. 124, pp. 10596-10604, 2002. 53 [8] J. Henzie, M. H. Lee, and T. W. Odom, "Multiscale patterning of plasmonic metamaterials," Nature nanotechnology, vol. 2, pp. 549-554, 2007. [9] V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, "Plasmonic nanostructure design for efficient light coupling into solar cells," Nano letters, vol. 8, pp. 4391-4397, 2008. [10] S. Y. Chou and W. Ding, "Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array," Optics express, vol. 21, pp. A60-A76, 2013. [11] S. A. Maier, "Plasmonics: Metal nanostructures for subwavelength photonic devices," Selected Topics in Quantum Electronics, IEEE Journal of, vol. 12, pp. 1214-1220, 2006. [12] Han, Z., E. Forsberg, and S. He, Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides. IEEE Photonics Technology Letters, 2007. 19(2): p. 91-93. [13] Jetté-Charbonneau, S., et al., Demonstration of Bragg gratings based on long ranging surface plasmon polariton waveguides. Optics express, 2005. 13(12): p. 4674-4682. [14] Boltasseva, A., et al., Integrated optical components utilizing long-range surface plasmon polaritons. Journal of Lightwave Technology, 2005. 23(1): p. 413. [15] Søndergaard, T., S.I. Bozhevolnyi, and A. Boltasseva, Theoretical analysis of ridge gratings for long-range surface plasmon polaritons. Physical Review B, 2006. 73(4): p. 045320. [16] M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, "Thin‐film nonlinear optical diode," Applied physics letters, vol. 66, pp. 2324-2326, 1995. [17] X.-S. Lin, J.-H. Yan, L.-J. Wu, and S. Lan, "High transmission contrast for single resonator based all-optical diodes with pump-assisting," Optics express, vol. 16, pp. 20949-20954, 2008. 54 [18] H. Zhou, K.-F. Zhou, W. Hu, Q. Guo, S. Lan, X.-S. Lin, et al., "All-optical diodes based on photonic crystal molecules consisting of nonlinear defect pairs," Journal of applied physics, vol. 99, p. 123111, 2006. [19] S. F. Mingaleev and Y. S. Kivshar, "Nonlinear transmission and light localization in photonic-crystal waveguides," JOSA B, vol. 19, pp. 2241-2249, 2002. [20] Zhu, J.H., et al., A nanoplasmonic high-pass wavelength filter based on a metal-insulator-metal circuitous waveguide. IEEE Transactions on Nanotechnology, 2011. 10(6): p. 1357-1361. [21] Pannipitiya, A., et al., Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure. Optics express, 2010. 18(6): p. 6191-6204. [22] Yun, B., G. Hu, and Y. Cui, Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal–insulator–metal waveguide. Journal of Physics D: Applied Physics, 2010. 43(38): p. 385102. [23] E. Jin and X. Xu, "Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture," Applied Physics B, vol. 84, pp. 3-9, 2006. [24] J. T. Krug II, E. J. Sánchez, and X. S. Xie, "Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation," The Journal of chemical physics, vol. 116, pp. 10895-10901, 2002. [25] W. H. Pernice, F. P. Payne, and D. F. Gallagher, "A general framework for the finite-difference time-domain simulation of real metals," Antennas and Propagation, IEEE Transactions on, vol. 55, pp. 916-923, 2007. [26] A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Applied optics, vol. 37, pp. 5271-5283, 1998. [27] M. A. Ordal, R. J. Bell, R. Alexander, L. Long, and M. Querry, "Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W," Applied optics, vol. 24, pp. 4493-4499, 1985. 55 [28] G. Veronis and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Applied Physics Letters, vol. 87, p. 131102, 2005. [29] H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, et al., "Surface plasmon polariton propagation and combination in Y-shaped metallic channels," Optics express, vol. 13, pp. 10795-10800, 2005. [30] B. Wang and G. P. Wang, "Surface plasmon polariton propagation in nanoscale metal gap waveguides," Optics letters, vol. 29, pp. 1992-1994, 2004. [31] G. Veronis and S. Fan, "Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides," Optics Express, vol. 15, pp. 1211-1221, 2007. [32] P. Ginzburg and M. Orenstein, "Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching," Optics express, vol. 15, pp. 6762-6767, 2007. [33] D. Pile and D. K. Gramotnev, "Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides," Applied Physics Letters, vol. 89, p. 041111, 2006. [34] R. Wahsheh, Z. Lu, and M. Abushagur, "Nanoplasmonic air-slot coupler: design and fabrication," in Frontiers in optics, 2012, p. FTh4A. 6. [35] R. Luebbers, F. P. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, “A frequencydependent finite-difference time-domain formulation for dispersive materials,” Electromagnetic Compatibility, IEEE Transactions on, vol. 32, no. 3, pp. 222–227, 1990. [36] D. F. Kelley and R. J. Luebbers, “Piecewise linear recursive convolution for di dispersive media using fdtd,” Antennas and Propagation, IEEE Transactions on, v vol. 44, no. 6, pp. 792–797, 1996. [37] R. J. Luebbers, F. Hunsberger, and K. S. Kunz, “A frequency-dependent finite-asdfsd difference time-domain formulation for transient propagation in plasma,” Antennas and Propagation, IEEE Transactions on, vol. 39, no. 1, pp. 29–34, 1991. 56 [38] R. J. Luebbers and F. Hunsberger, “Fdtd for¡ e1¿ n¡/e1¿ th-order dispersive media,” cAntennas and Propagation, IEEE Transactions on, vol. 40, no. 11, pp. 1297–1301, 1992. [39] F. Hunsberger, R. Luebbers, and K. Kunz, “Finite-difference time-domain analysis xcvbxiof gyrotropic media. i. magnetized plasma,” Antennas and Propagation, IEEE lllllllll Transactions on, vol. 40, no. 12, pp. 1489–1495, 1992 [40] F. Hunsberger, R. Luebbers, and K. Kunz, “Finite-difference time-domain analysis lllllllllof gyrotropic media. i. magnetized plasma,” Antennas and Propagation, IEEE s diiiiiiiTransactions on, vol. 40, no. 12, pp. 1489–1495, 1992 [41] A. Akyurtlu and D. H. Werner, “Bi-fdtd: A novel finite-difference time-domain I iiiiiiiiiformulation for modeling wave propagation in bi-isotropic media,” Antennas and iiiiiiiiiPropagation, IEEE Transactions on, vol. 52, no. 2, pp. 416–425, 2004 [42] A. Grande, I. Barba, A. C. Cabeceira, J. Represa, P. P. So, and W. J. Hoefer, “Fdtd iiiiiiiiimodeling of transient microwave signals in dispersive and lossy bi-isotropic media,” iiiiiiiiiMicrowave Theory and Techniques, IEEE Transactions on, vol. 52, no. 3, pp. 773–iiiiiiii784, 2004. [43] A. Akyurtlu and D. H. Werner, “A novel dispersive fdtd formulation for modeling iiiiitrt propagation in chiral metamaterials,” Antennas and Propagation, IEEE Transactions iiiiiiiiion, vol. 52, no. 9, pp. 2267–2276, 2004 |
en_US |