Design and simulation of plasmonic waveguide with periodic corrugations

Show simple item record

dc.contributor.author Niaz, Mohammad Rakeen
dc.contributor.author Nishat, Mirza Muntasir
dc.contributor.author Arif Hossain, Mohammad
dc.date.accessioned 2017-11-03T05:04:02Z
dc.date.available 2017-11-03T05:04:02Z
dc.date.issued 2016-11-20
dc.identifier.citation [1] W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, vol. 424, pp. 824-830, 2003. [2] S. A. Maier, Plasmonics: fundamentals and applications: Springer Science & Business Media, 2007. [3] D. K. Gramotnev and S. I. Bozhevolnyi, "Plasmonics beyond the diffraction limit," Nature photonics, vol. 4, pp. 83-91, 2010. [4] R. J. Blaikie and D. O. Melville, "Imaging through planar silver lenses in the optical near field," Journal of Optics A: Pure and Applied Optics, vol. 7, p. S176, 2005. [5] D. Melville and R. Blaikie, "Super-resolution imaging through a planar silver layer," Optics Express, vol. 13, pp. 2127-2134, 2005. [6] A. Hosseini and Y. Massoud, "A low-loss metal-insulator-metal plasmonic bragg reflector," Optics express, vol. 14, pp. 11318-11323, 2006. [7] A. J. Haes and R. P. Van Duyne, "A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles," Journal of the American Chemical Society, vol. 124, pp. 10596-10604, 2002. 53 [8] J. Henzie, M. H. Lee, and T. W. Odom, "Multiscale patterning of plasmonic metamaterials," Nature nanotechnology, vol. 2, pp. 549-554, 2007. [9] V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, "Plasmonic nanostructure design for efficient light coupling into solar cells," Nano letters, vol. 8, pp. 4391-4397, 2008. [10] S. Y. Chou and W. Ding, "Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array," Optics express, vol. 21, pp. A60-A76, 2013. [11] S. A. Maier, "Plasmonics: Metal nanostructures for subwavelength photonic devices," Selected Topics in Quantum Electronics, IEEE Journal of, vol. 12, pp. 1214-1220, 2006. [12] Han, Z., E. Forsberg, and S. He, Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides. IEEE Photonics Technology Letters, 2007. 19(2): p. 91-93. [13] Jetté-Charbonneau, S., et al., Demonstration of Bragg gratings based on long ranging surface plasmon polariton waveguides. Optics express, 2005. 13(12): p. 4674-4682. [14] Boltasseva, A., et al., Integrated optical components utilizing long-range surface plasmon polaritons. Journal of Lightwave Technology, 2005. 23(1): p. 413. [15] Søndergaard, T., S.I. Bozhevolnyi, and A. Boltasseva, Theoretical analysis of ridge gratings for long-range surface plasmon polaritons. Physical Review B, 2006. 73(4): p. 045320. [16] M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, "Thin‐film nonlinear optical diode," Applied physics letters, vol. 66, pp. 2324-2326, 1995. [17] X.-S. Lin, J.-H. Yan, L.-J. Wu, and S. Lan, "High transmission contrast for single resonator based all-optical diodes with pump-assisting," Optics express, vol. 16, pp. 20949-20954, 2008. 54 [18] H. Zhou, K.-F. Zhou, W. Hu, Q. Guo, S. Lan, X.-S. Lin, et al., "All-optical diodes based on photonic crystal molecules consisting of nonlinear defect pairs," Journal of applied physics, vol. 99, p. 123111, 2006. [19] S. F. Mingaleev and Y. S. Kivshar, "Nonlinear transmission and light localization in photonic-crystal waveguides," JOSA B, vol. 19, pp. 2241-2249, 2002. [20] Zhu, J.H., et al., A nanoplasmonic high-pass wavelength filter based on a metal-insulator-metal circuitous waveguide. IEEE Transactions on Nanotechnology, 2011. 10(6): p. 1357-1361. [21] Pannipitiya, A., et al., Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure. Optics express, 2010. 18(6): p. 6191-6204. [22] Yun, B., G. Hu, and Y. Cui, Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal–insulator–metal waveguide. Journal of Physics D: Applied Physics, 2010. 43(38): p. 385102. [23] E. Jin and X. Xu, "Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture," Applied Physics B, vol. 84, pp. 3-9, 2006. [24] J. T. Krug II, E. J. Sánchez, and X. S. Xie, "Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation," The Journal of chemical physics, vol. 116, pp. 10895-10901, 2002. [25] W. H. Pernice, F. P. Payne, and D. F. Gallagher, "A general framework for the finite-difference time-domain simulation of real metals," Antennas and Propagation, IEEE Transactions on, vol. 55, pp. 916-923, 2007. [26] A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Applied optics, vol. 37, pp. 5271-5283, 1998. [27] M. A. Ordal, R. J. Bell, R. Alexander, L. Long, and M. Querry, "Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W," Applied optics, vol. 24, pp. 4493-4499, 1985. 55 [28] G. Veronis and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Applied Physics Letters, vol. 87, p. 131102, 2005. [29] H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, et al., "Surface plasmon polariton propagation and combination in Y-shaped metallic channels," Optics express, vol. 13, pp. 10795-10800, 2005. [30] B. Wang and G. P. Wang, "Surface plasmon polariton propagation in nanoscale metal gap waveguides," Optics letters, vol. 29, pp. 1992-1994, 2004. [31] G. Veronis and S. Fan, "Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides," Optics Express, vol. 15, pp. 1211-1221, 2007. [32] P. Ginzburg and M. Orenstein, "Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching," Optics express, vol. 15, pp. 6762-6767, 2007. [33] D. Pile and D. K. Gramotnev, "Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides," Applied Physics Letters, vol. 89, p. 041111, 2006. [34] R. Wahsheh, Z. Lu, and M. Abushagur, "Nanoplasmonic air-slot coupler: design and fabrication," in Frontiers in optics, 2012, p. FTh4A. 6. [35] R. Luebbers, F. P. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, “A frequencydependent finite-difference time-domain formulation for dispersive materials,” Electromagnetic Compatibility, IEEE Transactions on, vol. 32, no. 3, pp. 222–227, 1990. [36] D. F. Kelley and R. J. Luebbers, “Piecewise linear recursive convolution for di dispersive media using fdtd,” Antennas and Propagation, IEEE Transactions on, v vol. 44, no. 6, pp. 792–797, 1996. [37] R. J. Luebbers, F. Hunsberger, and K. S. Kunz, “A frequency-dependent finite-asdfsd difference time-domain formulation for transient propagation in plasma,” Antennas and Propagation, IEEE Transactions on, vol. 39, no. 1, pp. 29–34, 1991. 56 [38] R. J. Luebbers and F. Hunsberger, “Fdtd for¡ e1¿ n¡/e1¿ th-order dispersive media,” cAntennas and Propagation, IEEE Transactions on, vol. 40, no. 11, pp. 1297–1301, 1992. [39] F. Hunsberger, R. Luebbers, and K. Kunz, “Finite-difference time-domain analysis xcvbxiof gyrotropic media. i. magnetized plasma,” Antennas and Propagation, IEEE lllllllll Transactions on, vol. 40, no. 12, pp. 1489–1495, 1992 [40] F. Hunsberger, R. Luebbers, and K. Kunz, “Finite-difference time-domain analysis lllllllllof gyrotropic media. i. magnetized plasma,” Antennas and Propagation, IEEE s diiiiiiiTransactions on, vol. 40, no. 12, pp. 1489–1495, 1992 [41] A. Akyurtlu and D. H. Werner, “Bi-fdtd: A novel finite-difference time-domain I iiiiiiiiiformulation for modeling wave propagation in bi-isotropic media,” Antennas and iiiiiiiiiPropagation, IEEE Transactions on, vol. 52, no. 2, pp. 416–425, 2004 [42] A. Grande, I. Barba, A. C. Cabeceira, J. Represa, P. P. So, and W. J. Hoefer, “Fdtd iiiiiiiiimodeling of transient microwave signals in dispersive and lossy bi-isotropic media,” iiiiiiiiiMicrowave Theory and Techniques, IEEE Transactions on, vol. 52, no. 3, pp. 773–iiiiiiii784, 2004. [43] A. Akyurtlu and D. H. Werner, “A novel dispersive fdtd formulation for modeling iiiiitrt propagation in chiral metamaterials,” Antennas and Propagation, IEEE Transactions iiiiiiiiion, vol. 52, no. 9, pp. 2267–2276, 2004 en_US
dc.identifier.uri http://hdl.handle.net/123456789/127
dc.description.abstract The key performance parameters of an MIM(metal-insulator-metal) surface plasmonic waveguide having periodic corrugations has been investigated. The transmittance, taking into account a wide range of optical wavelength was demonstrated by rigorous numerical calculations against the variation of different structural aspects. The results indicate that a very satisfactory filtering characteristic can be achieved by this variation of the parameters The output of this investigation has the potential to develop ultra-compact photonic filters for higher integration. en_US
dc.language.iso en en_US
dc.publisher IUT, EEE en_US
dc.title Design and simulation of plasmonic waveguide with periodic corrugations en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics