Numerical Simulation and Performance Optimization of Organic Solar Cell with Improved Efficiency

Show simple item record

dc.contributor.author Shupty, Rubaiyat Islam
dc.contributor.author Pramanik, Abrar Shahriar
dc.contributor.author Uddin, Md Zarif
dc.date.accessioned 2022-03-25T10:20:18Z
dc.date.available 2022-03-25T10:20:18Z
dc.date.issued 2021-03-30
dc.identifier.citation [1] Barry P. Rand, Henning Richter, organic solar cells, Fundamentals, Devices, and Upscaling Barry ,Taylor & Francis, ISBN: 9814463655,2014. [2] Luque A; Hegedus S., Handbook of photovoltaic science and engineering, John Wiley & Sons Ltd., ISBN 0-471-49196-9, 2003. [3] Peter Gevorkian, Sustainable energy systems engineering: the complete green building design resource, p.498 McGraw-Hill Professional, New York, USA,2007, ISBN:978-0071473590 [4] Marius Grundmann, The Physics of Semiconductor: An Introduction Including Nanophysics and Applications 2nd ed, p.3, Springer-Verlag, Berlin, Germany.2010, ISBN: 978-3642138843 [5] K. A Tsokos, Physics for the IB Diploma, 5th ed, Cambridge University Press, Cambridge, UK,2008, ISBN:978-05217708203 [6] Energy Sage, LLC. (2020, July 15),Types of solar panels [Online]. Available: https://www.energysage.com/solar/101/types-solar-panels/ [7] The Renewable Energy Hub. (2020, may 27), Different types of solar cell [Online]. Available: https://www.energysage.com/solar/101/types-solar-panels/ [8] Energy Sage, LLC. (2020, July 15), Major Types of solar panels [Online]. Available: https://www.energysage.com/solar/101/types-solar-panels/ [9] Omar A. Abdulrazzaq, Viney Saini, Shawn Bourdo, Enkeleda Dervishi and Alexandru S. Biris ,OrganicSolar Cells: A Review of Materials, Limitations, and Possibilities for Improvement, Particulate Science and Technology: An International Journal, 31:5,2013, 427-442, DOI: 10.1080/02726351.2013.769470 45 [10] Ossila, (2013, July 19),Organic Photovoltaics: An Introduction[Online]. Available: https://www.ossila.com/pages/organic-photovoltaics-introduction [11] Roderick C. I. MacKenzie: “An introduction to simulating optoelectronic devices with gpvdm.” ,nottingham.ac.uk. Autumn, 2019 [12] Physical address UK,(2020, may 15).gpvdm [Online]. Available: https://www.gpvdm.com/ [13] Imane Arbouch, Yasser Karzazi, B Hammouti “Organic photovoltaic cells: Operating principles, recent developments and current challenges – review” November 2014 ,Physical and Chemical News 72(4):73-84 [14] Vivek K. A, G. D. Agrawal, “organic solar cells: principles, mechanism and recent dvelopments” IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 [15] Omar A. Abdulrazzaq , Viney Saini , Shawn Bourdo , Enkeleda Dervishi and Alexandru S. Biris (2013) Organic Solar Cells: A Review of Materials, Limitations, and Possibilities for Improvement, Particulate Science and Technology: An International Journal, 31:5, 427-442, DOI: 10.1080/02726351.2013.769470 [16] pveducation.org, Solar Cell Efficiency [Online]. Available: https://www.pveducation.org/pvcdrom/solar-cell-operation/solar-cell-efficiency [17] CJ. Brabec, A. Cravino, D. Meissner, NS. Sariciftci, T. Fromherz, MT. Rispens, L. Sanchez, JC. Hummelen, Advanced Functional Materials. 11 (2001) 374. [18] MC. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, AJ. Heeger, CJ. Brabec, Advanced Materials. 18 (2006) 789. [19] T. Yamanari, T. Taima, J. Sakai, K. Saito, Solar Energy Materials and Solar Cells. 93(2009) 759. 46 [20] E. Bundgaard, FC. Krebs, Solar Energy Materials and Solar Cells. 91 (2007) 954. [21] J-M. Nunzi, Comptes Rendus Physique. 3 (2002) 523. [22] SH. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, JS. Moon, D. Moses, M. Leclerc, K. Lee, AJ. Heeger, Nature photonics. 3 (2009) 297. [23] G. Dennler, MC. Scharber, CJ. Brabec, Advanced Materials. 21 (2009) 1323. [24] VD. Mihailetchi, H. Xie, B. De Boer, LJA. Koster, PW. Blom, Advanced Functional Materials. 16 (2006) 699. [25] H-L.Yip, AK-Y. Jen, Energy and Environmental Science. 5 (2012) 5994. [26] B. Qi, J. Wang, Physical Chemistry Chemical Physics. 15 (2013) 8972. [27] J. Zhao, A. Wang, M.A. Green, Progress in Photovoltaics: Research and Applications. 7 (1999) 471. [28] E. Keith, Y. Hishikawa, W. Warta, D. Ewan, Progress in Photovoltaics: Research and Applications. 21 (2013) 827. [29] Nalwa, H.S.; “Handbook of Organic Conductive Molecules and Polymers” Vol.3: “Conductive Polymers: Spectroscopy and Physical Properties” ISBN: 0-471-96595-2 [30] Cook, S.; Katoh, R.; Furube, A. “Ultrafast Studies of Charge Generation in PCBM:P3HT Blend Films following Excitation of the Fullerene PCBM” J.Phys.Chem.C. 113(6), (2009) pp-2547-2552 [31] Ge, Weihao , “An overview on P3HT:PCBM, the most efficient organic solar cell material so far.” ,Solid State Physics II, Spring 2009 [32]Ossila.com,PTB7[Online].Available:https://www.ossila.com/products/ptb7?variant=34683857928355 47 [33] Influence of PC60BM or PC70BM as electron acceptor on the performance of polymer solar cells, F. Zhang et al., Sol. Energy Mater. Sol. Cells, 97 (2012), 71–77; DOI: 10.1016/j.solmat.2011.09.006. [34]Ossila.com,PC70BM[Online].Available:https://www.ossila.com/products/pc70bm?variant=25131691713 [35] Chen, Chun-Chao, Yang, Yang , “Organic Tandem Solar Cells: Design and Formation”, California digital library,2015 [36]technologies.tt,TechnologyTransfer[Online].Available:https://technologies.tt.research.ucf.edu/technologies/32146_tandem-structure-for-organic-photovoltaic-solar-cells [37] J. Yang, R. Zhu, Z.R. Hong, Y.J. He, A. Kumar, Y.F. Li, Y. Yang, A robust inter-connecting layer for achieving high performance tandem polymer solar cells, Advanced Materials, 23 (2011) 3465-3470. [38] T. Ameri, G. Dennler, C. Lungenschmied, C.J. Brabec, Organic tandem solar cells: A review, Energy and Environmental Science, 2 (2009) 347-363. [39] Yuliang Zhang, “Tandem Organic Solar Cells: Fabrication, Optimization, and Characterization” , researchgate, November 2013, DOI: 10.13140/RG.2.1.3179.4805 [40] Dou, L., You, J., Yang, J. et al. Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nature Photon 6, 180–185 (2012). https://doi.org/10.1038/nphoton.2011.356 [41] Kim, J., Hong, Z., Li, G. et al. 10.5% efficient polymer and amorphous silicon hybrid tandem photovoltaic cell. Nat Commun 6, 6391 (2015). https://doi.org/10.1038/ncomms7391 48 [42] S. Chen, G. Zhang, J. Liu, H. Yao, J. Zhang, T. Ma, et al., "An All‐Solution Processed Recombination Layer with Mild Post‐Treatment Enabling Efficient Homo‐Tandem Non‐fullerene Organic Solar Cells," December 2016, Advanced Materials 29(6) DOI: 10.1002/adma.201604231 [43] S. Chen, H. Yao, B. Hu, G. Zhang, L. Arunagiri, L. K. Ma, et al., "A Nonfullerene Semitransparent Tandem Organic Solar Cell with 10.5% Power Conversion Efficiency," September 2018, Advanced Energy Materials DOI: 10.1002/aenm.201800529 [44] Muath Bani Salim, Reza Nekovei, Jeyakumar Ramanujam,“ Organic tandem solar cells with 18.6% efficiency” January 2020, Solar Energy 198 , DOI: 10.1016/j.solener.2020.01.042 [45] D. Gupta, M. Bag, and K. S. Narayan, Appl. Phys. Lett., 2008, 93,163301 [46] Z. Masri, A. Ruseckas, E. V. Emelianova, L. Wang, A. K. Bansal, A. Matheson, H. T. Lemke, M. M. Nielsen, H. Nguyen, O. Coulembier, P. Dubois, D. Beljonne, and I. D. W. Samuel, Adv. Energy Mater., 2013, 3, 1445–1453. [47] Y.-W. Su, S.-C. Lan, and K.-H. Wei, Mater. Today, 2012, 15, 554–562. [48] M. T. Dang, L. Hirsch, and G. Wantz, Adv. Mater., 2011, 23, 3597–3602. [49] M. Singh, H. M. Haverinen, P. Dhagat, and G. E. Jabbour, Adv. Mater., 2010, 22, 673–685. [50] Ceradrop A MGI Group Company [Online] Available :www.ceradrop.fr [51] Y.-X. Nan, X.-L. Hu, T. T. Larsen-Olsen, B. Andreasen, T. Tromholt, J. W. Andreasen, D. M. Tanenbaum, H.-Z. Chen, and F. C. Krebs, Nanotechnology, 2011, 22, 475301. [52] F. C. Krebs, J. Alstrup, H. Spanggaard, K. Larsen, and E. Kold, Sol. Energy Mater. Sol. Cells, 2004, 83, 293–300. [53] F. C. Krebs, S. A. Gevorgyan, and J. Alstrup, J. Mater. Chem., 2009,19, 5442. 49 [54] F. C. Krebs, Sol. Energy Mater. Sol. Cells, 2009, 93, 465–475. [55] C.-Y. Chen, H.-W. Chang, Y.-F. Chang, B.-J. Chang, Y.-S. Lin, P.-S. Jian, H.-C. Yeh, H.-T. Chien, E.-C. Chen, Y.-C. Chao, H.-F. Meng, H.-W. Zan, H.-W. Lin, S.-F. Horng, Y.-J. Cheng, F.-W. Yen, I.-F. Lin, H.-Y. Yang, K.-J. Huang, and M.-R. Tseng, J. Appl. Phys., 2011, 110, 094501. [56] F. Jakubka, M. Heyder, F. Machui, J. Kaschta, D. Eggerath, W. Lövenich, F. C. Krebs, and C. J. Brabec, Sol. Energy Mater. Sol. Cells, 2013, 109, 120–125. [57] Merck KGaA. (2017). Innovation Award for Organic Photovoltaics at the BAU [Press release]. Retrieved from https://www.emdgroup.com/en/news/opv-innovation-award-19-01-2017.html [58] Manyika, J.; Chui, M.; Bisson, P.; Woetzel, J.; Dobbs, R.; Bughin, J.; Aharon, D. The Internet of Things: Mapping the Value Beyond the Hype. McKinsey Global Institute 2015. http://www.mckinsey.com/businessfunctions/digital-mckinsey/our-insights/the-internet-of-things-the-valueof-digitizing-the-physical-world (accessed September 20, 2017) [59] Lechene, B. P.; Cowell, M.; Pierre, A.; Evans, J. W.; Wright, P. K.; Arias, A. C. Nano Energy 2016, 26, 631-640. [60] Minnaert, B.; Veelaert, P. Adv. Sci. Tech. 2010, 74, 170-175. [61] Apostolou, G.; Reinders, A.; Verwaal, M. Energy Science and Engineering 2016, 4(1), 69-85 en_US
dc.identifier.uri http://hdl.handle.net/123456789/1290
dc.description Supervised by Prof. Dr. Md. Ruhul Amin, Department of Electrical and Electronics Engineering(EEE), Islamic University of Technology(IUT), Board Bazar, Gazipur-1704, Bangladesh en_US
dc.description.abstract Organic solar cells (OSCs) are considered one of the most important upcoming photovoltaic technologies. Enhancing the overlap between absorption spectra of OSCs and solar spectrum is one way to boost their performance. In this work an organic solar cell is introduced and characterized which uses P3HT:PCBM(Donor-poly(3-hexylthiophene-2,5-diyl): Accepter-[6,6]PhenylC61butyricacidmethylester)andPTB7:PC70BM(DonorPoly[[4,8bis[(2ethylhexyl)oxy]benzo[1,2b:4,5b’]dithiophene2,6diyl][3fluoro2[(2ethylhexyl)carbonyl]Thieno[3,4b]thiophenediyl]]:Accepter-[6,6]-Phenyl-C70-butyric acid methyl ester) as photoactive absorbing layer respectively. Throughout the work, a 3D software simulation called GPVDM is used to model J-V characteristics for various designs. Tandem organic solar structures were implemented to increase performance even further. An illumination level of 1000 W/m2 (AM1.5G standard) and a concentration level of 1 Sun is considered for all the simulation in the work. The top and bottom subcells' active layer thicknesses were varied to optimize the design. Using different materials for the HTL , ETL , and intermediate layer strengthened our structure even further the change in efficiency was plotted against a single increasing parameter, with all other parameters held constant. After analyzing those curves, we reached the optimum thickness for top front sub cell 330nm and lower bottom sub cell 55nm and the final design is proposed which yields power conversion efficiency 11.11% .We also discussed about the potential improvisations of our design that we are optimistic about. en_US
dc.language.iso en en_US
dc.publisher Department of Electrical and Electronic Engineering, Islamic University of Technology (IUT), Board Bazar, Gazipur-1704, Bangladesh en_US
dc.title Numerical Simulation and Performance Optimization of Organic Solar Cell with Improved Efficiency en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics