| Login
dc.contributor.author | Al-Mahmud, Md. Abdullah | |
dc.date.accessioned | 2022-04-05T03:49:57Z | |
dc.date.available | 2022-04-05T03:49:57Z | |
dc.date.issued | 2021-03-30 | |
dc.identifier.citation | [1] D. Abbott and X. C. Zhang, “Scanning the issue: T-ray imaging, sensing, and retection,” Proceedings of the IEEE. 2007, doi: 10.1109/JPROC.2007.900894. [2] W. Withayachumnankul et al., “T-ray sensing and imaging,” 2007, doi: 10.1109/JPROC.2007.900325. [3] M. M. Awad and R. A. Cheville, “Transmission terahertz waveguide-based imaging below the diffraction limit,” Appl. Phys. Lett., 2005, doi: 10.1063/1.1942637. [4] D. J. Cook, B. K. Decker, and M. G. Allen, “Quantitative THz spectroscopy of explosive materials,” Opt. InfoBase Conf. Pap., p. MA6, Mar. 2005, doi: 10.1364/otst.2005.ma6. [5] C. J. Strachan et al., “Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity,” J. Pharm. Sci., 2005, doi: 10.1002/jps.20281. [6] R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz Pulsed Imaging of skin cancer in the time and frequency domain,” 2003, doi: 10.1023/A:1024409329416. [7] D. A. Crawley et al., “Terahertz pulse imaging: A pilot study of potential applications in dentistry,” Caries Res., 2003, doi: 10.1159/000072167. [8] R. Köhler et al., “Terahertz semiconductor-heterostructure laser,” Nature, 2002, doi: 10.1038/417156a. [9] N. E. Karpowicz, J. Chen, T. Tongue, and X. C. Zhang, “Coherent millimetre wave to mid-infrared measurements with continuous bandwidth reaching 40 THz,” Electron. Lett., 2008, doi: 10.1049/el:20080356. [10] Q. Wu, M. Litz, and X. C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett., 1995, doi: 10.1063/1.116356. [11] B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene coated hollow glass waveguides for the transmission of THz radiation,” 2007, doi: 10.1364/ol.32.002945. [12] M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon Photonic Crystal Fiber as Terahertz Waveguide,” Japanese J. Appl. Physics, Part 2 Lett., 2004, doi: 10.1143/jjap.43.l317. [13] K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express, 2009, doi: 10.1364/oe.17.008592. [14] M. S. Islam, J. Sultana, A. Dinovitser, B. W. H. Ng, and D. Abbott, “A novel Zeonex based oligoporous-core photonic crystal fiber for polarization preserving terahertz applications,” Opt. Commun., 2018, doi: 10.1016/j.optcom.2017.12.061. 79 [15] L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett., 2006, doi: 10.1364/ol.31.000308. [16] R. Islam, G. K. M. Hasanuzzaman, M. S. Habib, S. Rana, and M. A. G. Khan, “Low-loss rotated porous core hexagonal single-mode fiber in THz regime,” Opt. Fiber Technol., vol. 24, pp. 38–43, Aug. 2015, doi: 10.1016/j.yofte.2015.04.006. [17] H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett., vol. 80, no. 15, pp. 2634–2636, Apr. 2002, doi: 10.1063/1.1468897. [18] K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Porous-core honeycomb bandgap THz fiber,” Opt. Lett., 2011, doi: 10.1364/ol.36.000666. [19] M. Uthman, B. M. A. Rahman, N. Kejalakshmy, A. Agrawal, and K. T. V. Grattan, “Design and characterization of low-loss porous-core photonic crystal fiber,” IEEE Photonics J., vol. 4, no. 6, pp. 2315–2325, 2012, doi: 10.1109/JPHOT.2012.2231939. [20] S. F. Kaijage, Z. Ouyang, and X. Jin, “Porous-core photonic crystal fiber for low loss terahertz wave guiding,” IEEE Photonics Technol. Lett., vol. 25, no. 15, pp. 1454–1457, 2013, doi: 10.1109/LPT.2013.2266412. [21] M. I. Hasan, S. M. A. Razzak, G. K. M. Hasanuzzaman, and M. S. Habib, “Ultra-low material loss and dispersion flattened fiber for THz transmission,” IEEE Photonics Technol. Lett., vol. 26, no. 23, pp. 2372–2375, Dec. 2014, doi: 10.1109/LPT.2014.2356492. [22] M. S. Islam et al., “Extremely low material loss and dispersion flattened TOPAS based circular porous fiber for long distance terahertz wave transmission,” Opt. Fiber Technol., 2017, doi: 10.1016/j.yofte.2016.11.014. [23] M. S. Islam, S. Rana, M. R. Islam, M. Faisal, H. Rahman, and J. Sultana, “Porous core photonic crystal fibre for ultra-low material loss in THz regime,” IET Commun., vol. 10, no. 16, pp. 2179–2183, Nov. 2016, doi: 10.1049/iet-com.2016.0227. [24] G. K. M. Hasanuzzaman, M. S. Habib, M. A. Hossain, S. M. A. Razzak, and Y. Namihira, “Low Loss Single-Mode Porous-Core Kagome Photonic Crystal Fiber for THz Wave Guidance,” J. Light. Technol. Vol. 33, Issue 19, pp. 4027-4031, vol. 33, no. 19, pp. 4027–4031, Oct. 2015. [25] M. R. Hasan, M. A. Islam, and A. A. Rifat, “A single mode porous-core square lattice photonic crystal fiber for THz wave propagation,” J. Eur. Opt. Soc., vol. 12, no. 1, p. 15, Dec. 2016, doi: 10.1186/s41476-016-0017-5. [26] M. F. H. Arif, M. J. H. Biddut, K. Ahmed, and S. Asaduzzaman, “Simulation based analysis of formalin detection through photonic crystal fiber,” 2016, doi: 10.1109/ICIEV.2016.7760106. [27] M. R. Hasan, S. Akter, M. S. Rahman, and K. Ahmed, “Design of a surface plasmon resonance refractive index sensor with high sensitivity,” Opt. Eng., 2017, doi: 80 10.1117/1.oe.56.8.087101. [28] H. Thenmozhi, M. S. Mani Rajan, and K. Ahmed, “D-shaped PCF sensor based on SPR for the detection of carcinogenic agents in food and cosmetics,” Optik (Stuttg)., 2019, doi: 10.1016/j.ijleo.2018.11.098. [29] K. Ahmed et al., “Design of D-shaped elliptical core photonic crystal fiber for blood plasma cell sensing application,” Results Phys., 2019, doi: 10.1016/j.rinp.2019.02.026. [30] K. Ahmed et al., “Refractive Index-Based Blood Components Sensing in Terahertz Spectrum,” IEEE Sens. J., 2019, doi: 10.1109/JSEN.2019.2895166. [31] I. S. Amiri et al., “Tri-core photonic crystal fiber based refractive index dual sensor for salinity and temperature detection,” Microw. Opt. Technol. Lett., 2019, doi: 10.1002/mop.31612. [32] M. A. Jabin, K. Ahmed, M. J. Rana, B. K. Paul, Y. Luo, and D. Vigneswaran, “Titanium-Coated Dual-Core D-Shaped SPR-Based PCF for Hemoglobin Sensing,” Plasmonics, 2019, doi: 10.1007/s11468-019-00961-6. [33] J. Sultana, M. S. Islam, J. Atai, M. R. Islam, and D. Abbott, “Near-zero dispersion flattened, low-loss porous-core waveguide design for terahertz signal transmission,” Opt. Eng., 2017, doi: 10.1117/1.oe.56.7.076114. [34] M. S. Islam et al., “Zeonex-based asymmetrical terahertz photonic crystal fiber for multichannel communication and polarization maintaining applications,” Appl. Opt., 2018, doi: 10.1364/ao.57.000666. [35] M. S. Islam, M. Faisal, and S. M. A. Razzak, “Dispersion flattened extremely high-birefringent kagome lattice elliptic core photonic crystal fiber in THz regime,” Opt. Quantum Electron., 2019, doi: 10.1007/s11082-019-1744-9. [36] J. Sultana, M. S. Islam, K. Ahmed, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Terahertz detection of alcohol using a photonic crystal fiber sensor,” Appl. Opt., 2018, doi: 10.1364/ao.57.002426. [37] M. S. Islam et al., “Liquid-infiltrated photonic crystal fiber for sensing purpose: Design and analysis,” Alexandria Eng. J., 2018, doi: 10.1016/j.aej.2017.03.015. [38] M. S. Islam et al., “A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime,” IEEE Sens. J., 2018, doi: 10.1109/JSEN.2017.2775642. [39] “Waveguide.” https://whatis.techtarget.com/definition/waveguide. [40] “Auston Switch,” [Online]. Available: https://www.revolvy.com/page/Auston-switch. [41] “Microstrip,” [Online]. Available: https://en.wikipedia.org/wiki/Microstrip. [42] “Circular Metalic Waveguide.” https://www.oreilly.com/library/view/rf-and-microwave/9781118349571/c04_level1_7.xhtml#c04_fig_anc_0022. 81 [43] “Hollow core fibers.” https://www.rp-photonics.com/hollow_core_fibers.html. [44] I. Explorer, “IEEE Explorer,” [Online]. Available: https://ieeexplore.ieee.org/document/7875632. [45] “Research Gate.” https://www.researchgate.net/publication/238400437_How_do_we_make_sense_of_the_process_of_legitimising_an_educational_action_research_thesis_for_the_award_of_a_PhD_degree_A_contribution_to_educational_theory. [46] “Wikipedia.” https://en.wikipedia.org/wiki/Photonic-crystal_fiber. [47] S. S. Mishra and V. K. Singh, “Comparative study of fundamental properties of honey comb photonic crystal fiber at 1.55μm wavelength,” J. Microwaves, Optoelectron. Electromagn. Appl., 2011, doi: 10.1590/S2179-10742011000200005. [48] “Techopedia.” https://www.techopedia.com/definition/24948/photonic-crystal-fiber-pcf. [49] K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Light. Technol., 1997, doi: 10.1109/50.618320. [50] M. Szpulak, W. Urbanczyk, T. Martynkien, J. Wojcik, and W. J. Bock, “<title>Temperature sensitivity of photonic crystal holey fibers</title>,” 2003, doi: 10.1117/12.497722. [51] Y. Colombe, D. H. Slichter, A. C. Wilson, D. Leibfried, and D. J. Wineland, “Single-mode optical fiber for high-power, low-loss UV transmission,” Opt. Express, 2014, doi: 10.1364/oe.22.019783. [52] T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett., 1997, doi: 10.1364/ol.22.000961. [53] C. Hensley, D. H. Broaddus, C. B. Schaffer, and A. L. Gaeta, “Photonic band-gap fiber gas cell fabricated using femtosecond micromachining,” Opt. Express, 2007, doi: 10.1364/oe.15.006690. [54] J. Ju, W. Jin, and M. S. Demokan, “Properties of a highly birefringent photonic crystal fiber,” IEEE Photonics Technol. Lett., 2003, doi: 10.1109/LPT.2003.818051. [55] J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys., 2006, doi: 10.1103/RevModPhys.78.1135. [56] R. Suresh, S. C. Tjin, and J. Hao, “Fiber Bragg Grating,” in Advanced Topics in Science and Technology in China, 2012. [57] F. Jansen, F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann, “High-power very large mode-area thulium-doped fiber laser,” Opt. Lett., 2012, doi: 10.1364/ol.37.004546. [58] W. Reeves, J. Knight, P. Russell, and P. Roberts, “Demonstration of ultra-flattened dispersion in photonic crystal fibers,” Opt. Express, 2002, doi: 10.1364/oe.10.000609. 82 [59] G. Vienne et al., “Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports,” Opt. Express, 2004, doi: 10.1364/opex.12.003500. [60] P. Russell, “Recent advances in photonic crystal fibres,” 2004, doi: 10.1109/icton.2003.1264563. [61] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: Molding the flow of light. 2011. [62] C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys., 2017, doi: 10.1103/RevModPhys.89.045003. [63] M. Hermatschweiler, A. Ledermann, G. A. Ozin, M. Wegener, and G. Von Freymann, “Fabrication of silicon inverse woodpile photonic crystals,” Adv. Funct. Mater., 2007, doi: 10.1002/adfm.200601074. [64] W. Jin, H. F. Xuan, and H. L. Ho, “Sensing with hollow-core photonic bandgap fibers,” Meas. Sci. Technol., 2010, doi: 10.1088/0957-0233/21/9/094014. [65] S. Brustlein et al., “Double-clad hollow core photonic crystal fiber for coherent Raman endoscope,” Opt. Express, 2011, doi: 10.1364/oe.19.012562. [66] L. Duan and Y. Qiu, “Recent advances in organic electroluminescent materials and devices,” Cailiao Yanjiu Xuebao/Chinese Journal of Materials Research. 2015, doi: 10.11901/1005.3093.2014.724. [67] T. S. Saini, A. Kumar, and R. Kumar Sinha, “Broadband mid-IR supercontinuum generation in As2Se3 based chalcogenide photonic crystal fiber: A new design and analysis,” Opt. Commun., 2015, doi: 10.1016/j.optcom.2015.02.049. [68] C. Huang et al., “Ultraflat, broadband, and highly coherent supercontinuum generation in all-solid microstructured optical fibers with all-normal dispersion,” Photonics Res., 2018, doi: 10.1364/prj.6.000601. [69] M. N. Hossen, M. Ferdous, M. Abdul Khalek, S. Chakma, B. K. Paul, and K. Ahmed, “Design and analysis of biosensor based on surface plasmon resonance,” Sens. Bio-Sensing Res., 2018, doi: 10.1016/j.sbsr.2018.08.003. [70] M. R. Islam, M. F. Kabir, K. M. A. Talha, and M. S. Islam, “A novel hollow core terahertz refractometric sensor,” Sens. Bio-Sensing Res., 2019, doi: 10.1016/j.sbsr.2019.100295. [71] J. . Chettle, D.R., Fremlin, “Physics in Medicine & Biology,” 1984. [72] B. H. Brown, R. H. Smallwood, D. C. Barber, P. V. Lawford, and D. R. Hose, Medical physics and biomedical engineering. 2017. [73] W. Shi, Q. Fang, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Fiber lasers and their applications [Invited],” Appl. Opt., 2014, doi: 10.1364/ao.53.006554. [74] I. Giles, “Fibre optics,” 1983, doi: 10.1088/0305-4624/14/3/408. 83 [75] S. Matsuura and H. Ito, “Generation of CW terahertz radiation with photomixing,” Top. Appl. Phys., 2005, doi: 10.1007/10828028_6. [76] J. Y. Suen, W. Li, Z. D. Taylor, and E. R. Brown, “Characterization and modeling of a terahertz photoconductive switch,” Appl. Phys. Lett., 2010, doi: 10.1063/1.3374404. [77] P. Davidovits, Physics in biology and medicine. 2018. [78] R. K. Hobbie and B. J. Roth, Intermediate physics for medicine and biology, fifth edition. 2015. [79] N. Kukutsu and Y. Kado, “Overview of millimeter and terahertz wave application research,” NTT Technical Review. 2009. [80] E. M. Abreu, P. Pereira, J. C. Marques, and G. Esteves, “Invasive lobular carcinoma:A rare presentation in the male breast,” BMJ Case Rep., 2016, doi: 10.1136/bcr-2016-215665. [81] A. J. Fitzgerald et al., “Terahertz pulsed imaging of human breast tumors,” Radiology, 2006, doi: 10.1148/radiol.2392041315. [82] “Cancer Council.” https://www.cancer.org.au/cancer-information/types-of-cancer/melanoma. [83] O. Fejerskov, “Changing paradigms in concepts on dental caries: Consequences for oral health care,” 2004, doi: 10.1159/000077753. [84] N. Pavel, “Medical physics,” in The New Physics, 2012. [85] I. F. Akyildiz, J. M. Jornet, and C. Han, “Terahertz band: Next frontier for wireless communications,” Phys. Commun., 2014, doi: 10.1016/j.phycom.2014.01.006. [86] T. Nagatsuma et al., “Terahertz wireless communications based on photonics technologies,” Opt. Express, 2013, doi: 10.1364/oe.21.023736. [87] S. Koenig et al., “Wireless sub-THz communication system with high data rate,” Nat. Photonics, 2013, doi: 10.1038/nphoton.2013.275. [88] T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics, vol. 10, no. 6, pp. 371–379, Jun. 2016, doi: 10.1038/nphoton.2016.65. [89] L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett., vol. 31, no. 3, p. 308, Feb. 2006, doi: 10.1364/ol.31.000308. [90] A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett., 2008, doi: 10.1063/1.2840164. [91] A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express, 2008, doi: 10.1364/oe.16.006340. 84 [92] A. M. R. Pinto and M. Lopez-Amo, “Photonic crystal fibers for sensing applications,” Journal of Sensors. 2012, doi: 10.1155/2012/598178. [93] J. Arnaud, “Optical waveguide theory,” Optical and Quantum Electronics. 1980, doi: 10.1007/BF00620035. [94] A. Bertoncini and C. Liberale, “3D Printed waveguides based on photonic crystal fiber designs for complex fiber-end photonic devices,” arXiv. 2020, doi: 10.1364/optica.397281. [95] K. Saitoh, N. Florous, and M. Koshiba, “Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses,” Opt. Express, 2005, doi: 10.1364/opex.13.008365. [96] S. Ali, N. Ahmed, S. Aljunid, and B. Ahmad, “Hybrid porous core low loss dispersion flattened fiber for THz propagation,” Photonics Nanostructures - Fundam. Appl., 2016, doi: 10.1016/j.photonics.2016.09.003. [97] S. J. Oh et al., “Measurement depth enhancement in terahertz imaging of biological tissues,” Opt. Express, 2013, doi: 10.1364/oe.21.021299. [98] M. Selim Habib, M. Samiul Habib, S. M. Abdur Razzak, Y. Namihira, M. A. Hossain, and M. A. Goffar Khan, “Broadband dispersion compensation of conventional single mode fibers using microstructure optical fibers,” Optik (Stuttg)., 2013, doi: 10.1016/j.ijleo.2012.12.014. [99] N. N. Chen, J. Liang, and L. Y. Ren, “High-birefringence, low-loss porous fiber for single-mode terahertz-wave guidance,” Appl. Opt., 2013, doi: 10.1364/AO.52.005297. [100] S. Chowdhury, S. Sen, K. Ahmed, and S. Asaduzzaman, “Design of highly sensible porous shaped photonic crystal fiber with strong confinement field for optical sensing,” Optik (Stuttg)., 2017, doi: 10.1016/j.ijleo.2017.03.123. [101] COMSOL, “Introduction to COMSOL Multiphysics 5.3,” Manual, 2014. [102] Comsol, M ultiphysics C OMSOL. 2010. [103] COMSOL, Modeling Guide. 2010. [104] COMSOL Multiphysics, “Optimization Module,” User’s Guid., 2015. [105] S. G. Johnson and J. D. Joannopoulos, “Electromagnetic theory,” in Encyclopedia of Modern Optics, 2018. [106] E. E. Method, “Standard Practice for Determining Electrical Conductivity Using the,” Society, 2000. [107] C. B. Reid, E. Pickwell-Macpherson, J. G. Laufer, A. P. Gibson, J. C. Hebden, and V. P. Wallace, “Accuracy and resolution of THz reflection spectroscopy for medical imaging,” Phys. Med. Biol., vol. 55, no. 16, pp. 4825–4838, 2010, doi: 10.1088/0031-9155/55/16/013. 85 [108] M. R. Leahy-Hoppa, M. J. Fitch, X. Zheng, L. M. Hayden, and R. Osiander, “Wideband terahertz spectroscopy of explosives,” Chem. Phys. Lett., 2007, doi: 10.1016/j.cplett.2006.12.015. [109] K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express, vol. 11, no. 20, p. 2549, Oct. 2003, doi: 10.1364/oe.11.002549. [110] Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt., 2003, doi: 10.1364/ao.42.003509. [111] M. Nagel, P. Haring Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett., vol. 80, no. 1, pp. 154–156, Jan. 2002, doi: 10.1063/1.1428619. [112] M. S. Islam, M. Faisal, and S. M. A. Razzak, “Dispersion flattened porous-core honeycomb lattice terahertz fiber for ultra low loss transmission,” IEEE J. Quantum Electron., 2017, doi: 10.1109/JQE.2017.2760361. [113] J. Y. Lu et al., “Terahertz air-core microstructure fiber,” Appl. Phys. Lett., vol. 92, no. 6, 2008, doi: 10.1063/1.2839576. [114] G. Zhao, M. ter Mors, T. Wenckebach, and P. C. M. Planken, “Terahertz dielectric properties of polystyrene foam,” J. Opt. Soc. Am. B, vol. 19, no. 6, p. 1476, Jun. 2002, doi: 10.1364/josab.19.001476. [115] S. Rana, G. K. M. Hasanuzzaman, S. Habib, S. F. Kaijage, and R. Islam, “Proposal for a low loss porous core octagonal photonic crystal fiber for T-ray wave guiding,” Opt. Eng., vol. 53, no. 11, p. 115107, Nov. 2014, doi: 10.1117/1.oe.53.11.115107. [116] M. S. Islam, S. Rana, M. R. Islam, M. Faisal, H. Rahman, and J. Sultana, “Porous core photonic crystal fibre for ultra-low material loss in THz regime,” IET Commun., 2016, doi: 10.1049/iet-com.2016.0227. [117] F. A. Mou, M. M. Rahman, M. A. Al Mahmud, M. R. Islam, and M. I. H. Bhuiyan, “Design and Characterization of a Low Loss Polarization Maintaining Photonic Crystal Fiber for THz Regime,” 2019, doi: 10.1109/ICTP48844.2019.9041715. [118] M. S. Islam, J. Sultana, J. Atai, M. R. Islam, and D. Abbott, “Design and characterization of a low-loss, dispersion-flattened photonic crystal fiber for terahertz wave propagation,” Optik (Stuttg)., vol. 145, pp. 398–406, Sep. 2017, doi: 10.1016/j.ijleo.2017.07.061. [119] R. Islam, G. K. M. Hasanuzzaman, M. A. Sadath, S. Rana, and M. S. Habib, “Extremely low-loss single-mode photonic crystal fiber in the terahertz regime,” 2016, doi: 10.1109/CEEE.2015.7428279. [120] M. Moshiur Rahman, F. Akter Mou, M. Imamul Hassan Bhuiyan, and M. Rakibul Islam, “Design and characterization of a circular sectored core cladding structured photonic crystal fiber with ultra-low EML and flattened dispersion in the THz regime,” Opt. Fiber Technol., 2020, doi: 10.1016/j.yofte.2020.102158. 86 [121] M. Sheikholeslami, B. Rezaeianjouybari, M. Darzi, A. Shafee, Z. Li, and T. K. Nguyen, “Application of nano-refrigerant for boiling heat transfer enhancement employing an experimental study,” Int. J. Heat Mass Transf., 2019, doi: 10.1016/j.ijheatmasstransfer.2019.07.043. [122] X. Ma, M. Sheikholeslami, M. Jafaryar, A. Shafee, T. Nguyen-Thoi, and Z. Li, “Solidification inside a clean energy storage unit utilizing phase change material with copper oxide nanoparticles,” J. Clean. Prod., 2020, doi: 10.1016/j.jclepro.2019.118888. [123] H. Bao, K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Fabrication and characterization of porous-core honeycomb bandgap THz fibers,” Opt. Express, 2012, doi: 10.1364/oe.20.029507. [124] M. S. Islam, J. Sultana, J. Atai, D. Abbott, S. Rana, and M. R. Islam, “Ultra low-loss hybrid core porous fiber for broadband applications,” Appl. Opt., 2017, doi: 10.1364/ao.56.001232. [125] F. A. Mou, M. M. Rahman, M. R. Islam, and M. I. H. Bhuiyan, “Development of a photonic crystal fiber for THz wave guidance and environmental pollutants detection,” Sens. Bio-Sensing Res., 2020, doi: 10.1016/j.sbsr.2020.100346. [126] Z. Wu et al., “Low-loss polarization-maintaining THz photonic crystal fiber with a triple-hole core,” Appl. Opt., 2017, doi: 10.1364/ao.56.002288. [127] “Max Planck Institute.” https://mpl.mpg.de/divisions/russell-division/research/. [128] K. M. Kiang et al., “Extruded singlemode non-silica glass holey optical fibres,” Electron. Lett., vol. 38, no. 12, pp. 546–547, Jun. 2002, doi: 10.1049/el:20020421. [129] W. Talataisong et al., “Novel method for manufacturing optical fiber: extrusion and drawing of microstructured polymer optical fibers from a 3D printer,” Opt. Express, vol. 26, no. 24, p. 32007, Nov. 2018, doi: 10.1364/oe.26.032007. [130] M. R. Wagner et al., “Two-Dimensional Phononic Crystals: Disorder Matters,” Nano Lett., 2016, doi: 10.1021/acs.nanolett.6b02305. [131] J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol., 2004, doi: 10.1088/0957-0233/15/6/011. [132] Aihan-Yin and L. Xiong, “Highly nonlinear with low confinement losses square photonic crystal fiber based on a four-hole unit,” Infrared Phys. Technol., 2014, doi: 10.1016/j.infrared.2014.05.006. [133] H. Ademgil and S. Haxha, “Highly birefringent nonlinear PCF for optical sensing of analytes in aqueous solutions,” Optik (Stuttg)., 2016, doi: 10.1016/j.ijleo.2016.04.137. [134] M. S. Islam, J. Sultana, A. A. Rifat, A. Dinovitser, B. Wai-Him Ng, and D. Abbott, “Terahertz sensing in a hollow core photonic crystal fiber,” IEEE Sens. J., 2018, doi: 10.1109/JSEN.2018.2819165. 87 [135] C. Jollivet, B. Samson, L. Leick, L. Shah, M. Richardson, and A. Schülzgen, “Comparative study of light propagation and single-mode operation in large-mode area fibers designed for 2-μm laser applications,” Opt. Eng., 2014, doi: 10.1117/1.oe.54.1.011006. [136] S.-P. Tai, M.-C. Chan, T.-H. Tsai, S.-H. Guol, L.-J. Chen, and C.-K. Sun, “Two-photon fluorescence microscope with a hollow-core photonic crystal fiber,” Opt. Express, 2004, doi: 10.1364/opex.12.006122. [137] X. Yang, A. S. P. Chang, B. Chen, C. Gu, and T. C. Bond, “High sensitivity gas sensing by Raman spectroscopy in photonic crystal fiber,” Sensors Actuators, B Chem., 2013, doi: 10.1016/j.snb.2012.09.004. [138] D. Kacik and P. Tatar, “Photonic crystal fiber modal interferometer for refractive index sensing,” Komunikacie, 2013, doi: 10.1364/ol.37.001373. [139] P. Sharma and P. Sharan, “Design of photonic crystal-based biosensor for detection of glucose concentration in urine,” IEEE Sens. J., 2015, doi: 10.1109/JSEN.2014.2359799. [140] S. Roy, “Fiber optic sensor for determining adulteration of petrol and diesel by kerosene,” Sensors Actuators, B Chem., 1999, doi: 10.1016/S0925-4005(99)00171-9. [141] S. H. Kassani, R. Khazaeinezhad, Y. Jung, J. Kobelke, and K. Oh, “Suspended ring-core photonic crystal fiber gas sensor with high sensitivity and fast response,” IEEE Photonics J., 2015, doi: 10.1109/JPHOT.2015.2396121. [142] J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express, 2005, doi: 10.1364/opex.13.005883. [143] S. Rota-Rodrigo, A. López-Aldaba, R. A. Pérez-Herrera, M. Del Carmen López Bautista, Ó. Esteban, and M. López-Amo, “Simultaneous measurement of humidity and vibration based on a microwire sensor system using fast fourier transform technique,” J. Light. Technol., 2016, doi: 10.1109/JLT.2016.2580003. [144] H. Y. Fu et al., “Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer,” Appl. Opt., 2008, doi: 10.1364/AO.47.002835. [145] M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photonics. 2007, doi: 10.1038/nphoton.2007.3. [146] K. Lee and S. A. Asher, “Photonic crystal chemical sensors: pH and ionic strength,” J. Am. Chem. Soc., 2000, doi: 10.1021/ja002017n. [147] M. Morshed, M. Imran Hassan, T. K. Roy, M. S. Uddin, and S. M. Abdur Razzak, “Microstructure core photonic crystal fiber for gas sensing applications,” Appl. Opt., 2015, doi: 10.1364/ao.54.008637. [148] M. F. H. Arif, K. Ahmed, S. Asaduzzaman, and M. A. K. Azad, “Design and optimization of photonic crystal fiber for liquid sensing applications,” Photonic Sensors, 2016, doi: 88 10.1007/s13320-016-0323-y. [149] S. Asaduzzaman and K. Ahmed, “Proposal of a gas sensor with high sensitivity, birefringence and nonlinearity for air pollution monitoring,” Sens. Bio-Sensing Res., 2016, doi: 10.1016/j.sbsr.2016.06.001. [150] I. Islam et al., “Highly birefringent single mode spiral shape photonic crystal fiber based sensor for gas sensing applications,” Sens. Bio-Sensing Res., 2017, doi: 10.1016/j.sbsr.2017.04.001. [151] B. K. Paul, M. S. Islam, K. Ahmed, and S. Asaduzzaman, “Alcohol sensing over O+E+S+C+L+U transmission band based on porous cored octagonal photonic crystal fiber,” Photonic Sensors, 2017, doi: 10.1007/s13320-017-0376-6. [152] S. Asaduzzaman, K. Ahmed, T. Bhuiyan, and T. Farah, “Hybrid photonic crystal fiber in chemical sensing,” Springerplus, 2016, doi: 10.1186/s40064-016-2415-y. [153] B. K. Paul, K. Ahmed, S. Asaduzzaman, and M. S. Islam, “Folded cladding porous shaped photonic crystal fiber with high sensitivity in optical sensing applications: Design and analysis,” Sens. Bio-Sensing Res., 2017, doi: 10.1016/j.sbsr.2016.11.005. [154] S. E. Kim, B. H. Kim, C. G. Lee, S. Lee, K. Oh, and C.-S. Kee, “Elliptical defected core photonic crystal fiber with high birefringence and negative flattened dispersion,” Opt. Express, 2012, doi: 10.1364/oe.20.001385. [155] T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol., 2001, doi: 10.1088/0957-0233/12/7/318. [156] Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windele, “Evanescent wave gas sensing using microstructure fibre,” 2001, doi: 10.1117/1.1429930. [157] K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express, 2003, doi: 10.1364/oe.11.000843. [158] S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron., 2001, doi: 10.1023/A:1010886632146. [159] H. Ademgil and S. Haxha, “PCF based sensor with high sensitivity, high birefringence and low confinement losses for liquid analyte sensing applications,” Sensors (Switzerland), 2015, doi: 10.3390/s151229891. [160] Z. Liu et al., “Reflective-distributed SPR sensor based on twin-core fiber,” Opt. Commun., 2016, doi: 10.1016/j.optcom.2015.12.018. [161] Y. Peng, J. Hou, Z. Huang, and Q. Lu, “Temperature sensor based on surface plasmon resonance within selectively coated photonic crystal fiber,” Appl. Opt., 2012, doi: 10.1364/AO.51.006361. 89 [162] H. Yokota, H. Yashima, Y. Imai, and Y. Sasaki, “Coupling Characteristics of Fused Optical Fiber Coupler Formed with Single-Mode Fiber and Photonic Crystal Fiber Having Air Hole Collapsed Taper,” Adv. Optoelectron., 2016, doi: 10.1155/2016/6219895. [163] M. Rakibul Islam, M. M. I. Khan, F. Mehjabin, J. Alam Chowdhury, and M. Islam, “Design of a fabrication friendly & highly sensitive surface plasmon resonance-based photonic crystal fiber biosensor,” Results Phys., 2020, doi: 10.1016/j.rinp.2020.103501. [164] D. Pysz et al., “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Polish Acad. Sci. Tech. Sci., 2014, doi: 10.2478/bpasts-2014-0073. [165] V. V. R. Kumar et al., “Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation,” Opt. Express, 2002, doi: 10.1364/oe.10.001520. [166] B. J. Eggleton et al., “Chalcogenide photonics: fabrication, devices and applications Introduction " Photosensitive and thermal nonlinear effects in chalcogenide photonic crystal cavities,” Opt. Express Express, 2010. [167] M. C. J. Large et al., “Microstructured polymer optical fibres: New opportunities and challenges,” 2006, doi: 10.1080/15421400500374930. [168] H. Ebendorff-Heidepriem, J. Schuppich, A. Dowler, L. Lima-Marques, and T. M. Monro, “3D-printed extrusion dies: a versatile approach to optical material processing,” Opt. Mater. Express, 2014, doi: 10.1364/ome.4.001494. [169] Z. Liu and H.-Y. Tam, “Fabrication and Sensing Applications of Special Microstructured Optical Fibers,” in Selected Topics on Optical Fiber Technologies and Applications, 2018. [170] R. Islam, M. S. Habib, G. K. M. Hasanuzzaman, R. Ahmad, S. Rana, and S. F. Kaijage, “Extremely High-Birefringent Asymmetric Slotted-Core Photonic Crystal Fiber in THz Regime,” IEEE Photonics Technol. Lett., 2015, doi: 10.1109/LPT.2015.2457673. [171] J. Sultana, M. R. Islam, M. Faisal, K. M. Abu Talha, and M. S. Islam, “Design and analysis of a Zeonex based diamond-shaped core kagome lattice photonic crystal fiber for T-ray wave transmission,” Opt. Fiber Technol., 2019, doi: 10.1016/j.yofte.2018.11.017. [172] M. S. Islam et al., “A modified hexagonal photonic crystal fiber for terahertz applications,” Opt. Mater. (Amst)., 2018, doi: 10.1016/j.optmat.2018.03.054. [173] B. K. Paul, M. A. Haque, K. Ahmed, and S. Sen, “A novel hexahedron photonic crystal fiber in terahertz propagation: Design and analysis,” Photonics, 2019, doi: 10.3390/PHOTONICS6010032. [174] B. K. Paul and K. Ahmed, “Analysis of terahertz waveguide properties of Q-PCF based on FEM scheme,” Opt. Mater. (Amst)., 2020, doi: 10.1016/j.optmat.2019.109634. [175] B. K. Paul et al., “Extremely low loss optical waveguide for terahertz pulse guidance,” Results Phys., 2019, doi: 10.1016/j.rinp.2019.102666. | en_US |
dc.identifier.uri | http://hdl.handle.net/123456789/1299 | |
dc.description | Supervised by Prof. Dr. Mohammad Rakibul Islam Department of Electrical and Electronic Engineering(EEE), Islamic University of Technology(IUT), Board Bazar, Gazipur-1704. Bangladesh | en_US |
dc.description.abstract | In this work, the main attention is to develop Photonic Crystal Fiber (PCF) geometry that is applicable for THz wave propagation as well as in analytes sensing applications. Recently lots of researchers have developed their PCFs with low losses and high sensitivity. Optical properties of PCF based devices depend on the geometrical properties. So it can be said that there is a huge scope to develop the properties by changing the geometrical parameters. Based on the above mentioned situation, a PCF with sectored roundabout core is proposed. The cladding region follows the same sectored circular design also. Topas is used as a background material for both cladding and core region of designed fiber because Topas contains low material absorption loss with a consistent refractive index inside at a wide range of frequency. Guiding properties of developed PCF are investigated through Comsol Multiphysics v5.3 a with finite element method. Due to the strategic geometrical optimization, it renders improved performances in most of the crucial cases. It exhibits ultra-low effective material loss of 0.022 cm-1 at 0.9 THz, besides, near-zero flatten dispersion is observed in the wide THz spectrum. Moreover, to ensure the suitability of proposed PCF, other significant guiding properties such as confinement loss, effective area, and v-parameter, etc. are observed in the same THz frequency range. Lots of recent researches proved that PCF has the huge potentiality in analytes sensing cases. For example biomedical, gas sensing, analyte sensing, blood component sensing, alcohol and toxic sensing applications with high sensitivity and it is proved that PCF is a strong candidate in the field of sensing. Considering the above mentioned fact, our developed PCF structure has also been investigated for THz sensing cases with different analytes of various refractive indices. Cladding holes of the proposed geometry are filled with only air and core holes are filled with different liquid analytes having different refractive indices. At optimal design condition a high sensitivity of 91.8% , 92.0% , 92.2%, 92.3% and 92.4% and low confinement loss of 2.88 × 10-9cm-1, 2.69 × 10-9cm-1, 2.502 × 10-9cm-1, 2.308 × 10-9cm-1, 2.11 × 10-9cm-1 have been achieved for refractive indices of 1.33,1.34, 1.35, 1.36, and 1.37 respectively. Besides, a moderate effective area and low EML have also been achieved. Fabrication feasibility of the demonstrated design is a key concern for any researcher. The proposed PCF based waveguide and sensor is constructed by circular sectored core and cladding. By using extrusion technique, various types of structure have been fabricated by Max Plank Institute and the procedures of fabrication of the proposed design have been discussed in details. Finally, the outcomes and contribution of proposed design is highlighted in this research. The proposed design is applicable in both waveguide application for data transmission and in sensing application for detecting a wide variety of chemicals in industrial and chemical sector 1 | en_US |
dc.language.iso | en | en_US |
dc.publisher | Department of Electrical and Electronic Engineering, Islamic University of Technology (IUT), Board Bazar, Gazipur-1704, Bangladesh | en_US |
dc.title | Characterization and Design of a Porous Core Photonic Crystal Fiber for THz Wave Guiding and Sensing | en_US |
dc.type | Thesis | en_US |