Design, optimisation and comparative study on lead free perovskite solar cell using scaps-1d

Show simple item record

dc.contributor.author Khan, Moinul Ahsan
dc.contributor.author Islam, Md. Tauhedul
dc.contributor.author Maruf, Md. Shakline
dc.date.accessioned 2022-04-06T02:27:27Z
dc.date.available 2022-04-06T02:27:27Z
dc.date.issued 2021-03-30
dc.identifier.citation Li, Hangqian. (2016). "A modified sequential deposition method for fabrication of perovskite solar cells". Solar Energy. 126: 243–251. Bibcode: 2016SoEn..126...243L. doi:10.1016/j.solener.2015.12.045. "Research Cell Efficiency Records" (PDF). Office of Energy Efficiency & Renewable Energy. 2020. Zhu, Rui (2020-02-10). "Inverted devices are catching up". Nature Energy. 5 (2): 123–124. doi:10.1038/s41560-020-0559-z. ISSN 2058-7546. S2CID 213535738. Liu, Mingzhen; Johnston, Michael B.; Snaith, Henry J. (2013). "Efficient planar heterojunction perovskite solar cells by vapour deposition". Nature. 501 (7467): 395–398. Bibcode: 2013Natur.501..395L. doi:10.1038/nature12509. PMID 24025775. S2CID 205235359. Lotsch, B.V. (2014). "New Light on an Old Story: Perovskites Go Solar". Angew. Chem. Int. Ed. 53 (3): 635–637. doi:10.1002/anie.201309368. PMID 24353055. Service, R. (2013). "Turning Up the Light". Science. 342 (6160): 794–797. doi:10.1126/science.342.6160.794. PMID 24233703. "Nanoscale discovery could push perovskite solar cells to 31% efficency". 2016-07-04. Hodes, G. (2013). "Perovskite-Based Solar Cells". Science. 342 (6156): 317–318. Bibcode:2013Sci...342..317H. doi:10.1126/science.1245473. PMID 24136955. S2CID 41656229 Du H.J., Wang W.C., and Zhu J.Z., (2016). “Device simulation of lead-free CH3NH3SnI3 perovskite solar cells with high efficiency,” Chinese Physics B, vol. 25. 58 Seok, S. I., Yang, W. S., Park, B. W., Jung, E. H., Jeon, N. J., Kim, Y. C., and Lee, D. U. (2017). Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science, 356(6345), 1376-1379. Salah M. M., Kamel M. H., Mohamed A., and Ahmed S., “A Comparative Study of Different ETMs in Perovskite Solar Cell with Inorganic Copper Iodide as HTM.” Optik (2018), https://doi.org/10.1016 /j.ijleo.2018.10.052D. Nanova , A. K. Kast , M. Pfannmöller , C. Müller , L. Veith , I. Wacker , M. Agari , W. Hermes , P. Erk , W. Kowalsky , R. R. Schröder and R. Lovrinčić , Nano Lett., 2014, 14 , 2735 —2740 CrossRef CAS PubMed . A. Yella , L. P. Heiniger , P. Gao , M. K. Nazeeruddin and M. Grätzel , Nano Lett., 2014, 14 , 2591 —2596 A. Kojima , K. Teshima , Y. Shirai and T. Miyasaka , J. Am. Chem. Soc., 2009, 131 , 6050 —6051 A. K. Chandiran , M. Abdi-Jalebi , A. Yella , M. I. Dar , C. Yi , S. A. Shivashankar , M. K. Nazeeruddin and M. Grätzel , Nano Lett., 2014, 14 , 1190 —1195 CrossRef CAS PubMed . G. S. Han , H. S. Chung , B. J. Kim , D. H. Kim , J. W. Lee , B. S. Swain , K. Mahmood , J. S. Yoo , N. G. Park , J. H. Lee and H. S. Jung , J. Mater. Chem. A, 2015, Search PubMed . K. Mahmood , B. S. Swain , A. R. Kirmani and A. Amassian , J. Mater. Chem. A, 2015, 3 , 9051 —9057 X. Zheng, C. Wu, S. K. Jha, Z. Li, K. Zhu, and S. Priya, “Improved Phase Stability of Formamidinium Lead Triiodide Perovskite by Strain Relaxation,” ACS Energy Letters, vol. 1, no. 5, pp. 1014–1020, 2016.View at: Publisher Site | Google Scholar M. Saliba, T. Matsui, J. Seo et al., “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy & Environmental Science, vol. 9, no. 6, pp. 1989–1997, 2016.View at: Publisher Site | Google Scholar Garg H.P. and Prakash. Solar Energy- Fundamentals and Applications, Tata McGraw-Hill Education, 2000. en_US
dc.identifier.uri http://hdl.handle.net/123456789/1302
dc.description Supervised by Prof. Dr. Md. Fokhrul Islam Professor, Electrical and Electronics Engineering (EEE), Islamic University of Technology (IUT), Board Bazar, Gazipur, Bangladesh en_US
dc.description.abstract Perovskite solar cells have gotten a lot of attention in recent years because of their appealing characteristics, such as higher efficiency in higher spectrum range, low production costs, ease of fabrication, and steadily improving system efficiencies. The development of new manufacturing methods, materials, system architectures, and improved stability have been the subject of research efforts. In this study we have analyzed two optimized cell models which have been simulated in SCAPS-1D and have compared the characteristics between them. The optimization was set to the thickness and doping concentration(NA) of the perovskite layer, electron affinity of the ETM(Electron transporting medium). We used the whole standard spectrum to find the best possible range to get high QE. As different materials are being tested to be used in perovskite solar cell recently, we have switched two substances in the ETM keeping in mind about their optoelectronic qualities and production cost. Then a comparative analysis has been done depending on the I-V and QE characteristics of this two models. The open circuit voltage and the short circuit current have also been taken into account alongside the FF% and conversion efficiency. en_US
dc.language.iso en en_US
dc.publisher Department of Electrical and Electronic Engineering, Islamic University of Technology (IUT), Board Bazar, Gazipur-1704, Bangladesh en_US
dc.title Design, optimisation and comparative study on lead free perovskite solar cell using scaps-1d en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics