dc.identifier.citation |
[1] Darshana Govind, Brandon Ginley, Brendon Lutnick, John E Tomaszewski, and Pinaki Sarder. Glomerular detection and segmentation from multimodal microscopy images using a butterworth band-pass lter. In Medical Imaging 2018: Digital Pathology, volume 10581, page 1058114. International Society for Optics and Photonics, 2018. [2] Serena Yeung Fei-Fei Li, Justin Johnson. Detection and segmentation. Fei-Fei Li, Justin Johnson, Serena Yeung, 2017. 46 [3] https://www.mathworks.com/discovery/convolutional-neural-network mat- lab.html. Convolutional neural network-3 things you need to know. https://www.mathworks.com/discovery/convolutional-neural-network- matlab.html, 2015. [4] https://ujjwalkarn.me/2016/08/11/intuitive-explanation convnets/. An intuitive explanation of convolutional neural networks. https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/, 2016. [5] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 3431{3440, 2015. [6] Kaiming He, Georgia Gkioxari, Piotr Doll ar, and Ross Girshick. Mask r- cnn. In Proceedings of the IEEE international conference on computer vision, pages 2961{2969, 2017. [7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770{778, 2016. [8] Susan M Sheehan and Ron Korstanje. Automatic glomerular identi - cation and quanti cation of histological phenotypes using image analysis and machine learning. American Journal of Physiology-Renal Physiology, 315(6):F1644{F1651, 2018. [9] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban scene understanding. In Proceed- ings of the IEEE conference on computer vision and pattern recognition, pages 3213{3223, 2016. [10] Homer William Smith. The kidney: structure and function in health and disease. Oxford University Press, USA, 1951. 47 [11] Pinaki Sarder, Brandon Ginley, and John E Tomaszewski. Automated renal histopathology: Digital extraction and quanti cation of renal pathology. In Medical Imaging 2016: Digital Pathology, volume 9791, page 97910F. Inter- national Society for Optics and Photonics, 2016. [12] Agnes B Fogo. Mesangial matrix modulation and glomerulosclerosis. Nephron Experimental Nephrology, 7(2):147{159, 1999. [13] Gunter Wolf, Sheldon Chen, and Fuad N Ziyadeh. From the periphery of the glomerular capillary wall toward the center of disease: podocyte injury comes of age in diabetic nephropathy. Diabetes, 54(6):1626{1634, 2005. [14] Brandon Ginley, John E Tomaszewski, Rabi Yacoub, Feng Chen, and Pinaki Sarder. Unsupervised labeling of glomerular boundaries using gabor l- ters and statistical testing in renal histology. Journal of Medical Imaging, 4(2):021102, 2017. [15] Wilhelm Kriz, Norbert Gretz, and Kevin V Lemley. Progression of glomerular diseases: is the podocyte the culprit? Kidney international, 54(3):687{697, 1998. [16] JR Nyengaard and TF Bendtsen. Glomerular number and size in relation to age, kidney weight, and body surface in normal man. The Anatomical Record, 232(2):194{201, 1992. [17] Michael D Hughson, Victor G Puelles, Wendy E Hoy, Rebecca N Douglas- Denton, Susan A Mott, and John F Bertram. Hypertension, glomerular hy- pertrophy and nephrosclerosis: the e ect of race. Nephrology Dialysis Trans- plantation, 29(7):1399{1409, 2014. [18] Otto Saphir. The state of the glomerulus in experimental hypertrophy of the kidneys of rabbits. The American journal of pathology, 3(4):329, 1927. [19] Ruth Rasch, Finn Lauszus, Jesper Skovhus Thomsen, and Allan Flyvbjerg. Glomerular structural changes in pregnant, diabetic, and pregnant-diabetic rats. Apmis, 113(7-8):465{472, 2005. 48 [20] SK Agarwal, S Sethi, and AK Dinda. Basics of kidney biopsy: A nephrolo- gist's perspective. Indian journal of nephrology, 23(4):243, 2013. [21] Tom Sercu and Vaibhava Goel. Dense prediction on sequences with time- dilated convolutions for speech recognition. arXiv preprint arXiv:1611.09288, 2016. [22] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention, pages 234{241. Springer, 2015. [23] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: E cient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017. [24] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recog- nition, pages 4510{4520, 2018. [25] Anibal Pedraza, Jaime Gallego, Samuel Lopez, Lucia Gonzalez, Arvydas Lau- rinavicius, and Gloria Bueno. Glomerulus classi cation with convolutional neural networks. In Annual conference on medical image understanding and analysis, pages 839{849. Springer, 2017. [26] Rafael C Gonzalez, Richard E Woods, et al. Digital image processing, 2002. [27] Christoph Sommer, Christoph Straehle, Ullrich Koethe, and Fred A Ham- precht. Ilastik: Interactive learning and segmentation toolkit. In 2011 IEEE international symposium on biomedical imaging: From nano to macro, pages 230{233. IEEE, 2011. [28] Shruti Kannan, Laura A Morgan, Benjamin Liang, McKenzie G Cheung, Christopher Q Lin, Dan Mun, Ralph G Nader, Mostafa E Belghasem, Joel M 49 Henderson, Jean M Francis, et al. Segmentation of glomeruli within trichrome images using deep learning. Kidney international reports, 4(7):955{962, 2019. [29] Ke Zhang, Yurong Guo, Xinsheng Wang, Jinsha Yuan, Zhanyu Ma, and Zhenbing Zhao. Channel-wise and feature-points reweights densenet for image classi cation. In 2019 IEEE International Conference on Image Processing (ICIP), pages 410{414. IEEE, 2019. [30] Debesh Jha, Pia H Smedsrud, Michael A Riegler, Dag Johansen, Thomas De Lange, P al Halvorsen, and H avard D Johansen. Resunet++: An advanced architecture for medical image segmentation. In 2019 IEEE International Symposium on Multimedia (ISM), pages 225{2255. IEEE, 2019. [31] Francesco Visin, Marco Ciccone, Adriana Romero, Kyle Kastner, Kyunghyun Cho, Yoshua Bengio, Matteo Matteucci, and Aaron Courville. Reseg: A re- current neural network-based model for semantic segmentation. In Proceed- ings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages 41{48, 2016. [32] Abhishek Chaurasia and Eugenio Culurciello. Linknet: Exploiting encoder representations for e cient semantic segmentation. In 2017 IEEE Visual Communications and Image Processing (VCIP), pages 1{4. IEEE, 2017. [33] Vinod Nair and Geo rey E Hinton. Recti ed linear units improve restricted boltzmann machines. In Icml, 2010. [34] Sergey Io e and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International con- ference on machine learning, pages 448{456. PMLR, 2015. [35] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu Chen, Dehao Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, YonghuiWu, et al. Gpipe: E cient training of giant neural networks using pipeline parallelism. arXiv preprint arXiv:1811.06965, 2018. 50 [36] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146, 2016. [37] Mingxing Tan and Quoc Le. E cientnet: Rethinking model scaling for convo- lutional neural networks. In International Conference on Machine Learning, pages 6105{6114. PMLR, 2019. |
en_US |