| Login
dc.contributor.author | Emon, Eksan Ahmed | |
dc.contributor.author | Adil, Ifta Khairul | |
dc.contributor.author | Ahbab, Abir | |
dc.date.accessioned | 2022-04-16T02:19:10Z | |
dc.date.available | 2022-04-16T02:19:10Z | |
dc.date.issued | 2021-03-30 | |
dc.identifier.citation | [1] A. Shawon, M. J.-U. Rahman, F. Mahmud, and M. A. Zaman, “Bangla handwritten digit recognition using deep cnn for large and unbiased dataset,” in 2018 International Conference on Bangla Speech and Language Processing (ICBSLP), pp. 1–6, IEEE, 2018. [2] M. M. Hasan, M. R. U. Islam, and M. T. Mahmood, “Recognition of bengali handwritten digits using convolutional neural network architectures,” in 2018 International Conference on Bangla Speech and Language Processing (ICBSLP), pp. 1–6, IEEE, 2018. [3] R. Noor, K. M. Islam, and M. J. Rahimi, “Handwritten bangla numeral recognition using ensembling of convolutional neural network,” in 2018 21st International Conference of Computer and Information Technology (ICCIT), pp. 1–6, IEEE, 2018. [4] M. Z. Alom, P. Sidike, T. M. Taha, and V. K. Asari, “Handwritten bangla digit recognition using deep learning,” arXiv preprint arXiv:1705.02680, 2017. [5] B. Purkaystha, T. Datta, and M. S. Islam, “Bengali handwritten character recognition using deep convolutional neural network,” in 2017 20th International conference of computer and information technology (ICCIT), pp. 1–5, IEEE, 2017. [6] A. S. A. Rabby, S. Abujar, S. Haque, and S. A. Hossain, “Bangla handwritten digit recognition using convolutional neural network,” in Emerging Technologies in Data Mining and Information Security, pp. 111–122, Springer, 2019. [7] M. R. Mamun, Z. Al Nazi, and M. S. U. Yusuf, “Bangla handwritten digit recognition approach with an ensemble of deep residual networks,” in 2018 International Conference on Bangla Speech and Language Processing (ICBSLP), pp. 1–4, IEEE, 2018. 34 [8] O. Paul, “Image pre-processing on numtadb for bengali handwritten digit recognition,” in 2018 International Conference on Bangla Speech and Language Processing (ICBSLP), pp. 1–6, IEEE, 2018. [9] H. Zunair, N. Mohammed, and S. Momen, “Unconventional wisdom: A new transfer learning approach applied to bengali numeral classification,” in 2018 International Conference on Bangla Speech and Language Processing (ICBSLP), pp. 1–6, IEEE, 2018. [10] S. A. Kamran, A. I. Humayun, S. Alam, R. M. Doha, M. K. Mandal, T. Reasat, and F. Rahman, “Ai learns to recognize bengali handwritten digits: Bengali. ai computer vision challenge 2018,” arXiv preprint arXiv:1810.04452, 2018. [11] S. Alam, T. Reasat, R. M. Doha, and A. I. Humayun, “Numtadb-assembled bengali handwritten digits,” arXiv preprint arXiv:1806.02452, 2018. [12] A. Islam, F. Rahman, and A. S. A. Rabby, “Sankhya: an unbiased benchmark for bangla handwritten digits recognition,” in 2019 IEEE International Conference on Big Data (Big Data), pp. 4676–4683, IEEE, 2019. [13] C. Saha, R. H. Faisal, and M. M. Rahman, “Bangla handwritten digit recognition using an improved deep convolutional neural network architecture,” in 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6, IEEE, 2019. [14] T. I. Aziz, A. S. Rubel, M. S. Salekin, and R. Kushol, “Bangla handwritten numeral character recognition using directional pattern,” in 2017 20th International Conference of Computer and Information Technology (ICCIT), pp. 1–5, IEEE, 2017. [15] G. Rabbani, M. A. Islam, M. A. Azim, M. K. Islam, and M. M. Rahman, “Bangladeshi license plate detection and recognition with morphological operation and convolution neural network,” in 2018 21st International Conference of Computer and Information Technology (ICCIT), pp. 1–5, IEEE, 2018. 35 [16] A. Sufian, A. Ghosh, A. Naskar, F. Sultana, J. Sil, and M. H. Rahman, “Bdnet: bengali handwritten numeral digit recognition based on densely connected convolutional neural networks,” Journal of King Saud UniversityComputer and Information Sciences, 2020. [17] R. Basri, M. R. Haque, M. Akter, and M. S. Uddin, “Bangla handwritten digit recognition using deep convolutional neural network,” in Proceedings of the international conference on computing advancements, pp. 1–7, 2020. [18] M. A. Al Nasim, R. E. Ferdous, M. A. H. Pantho, and A. I. Chowdhury, “A comparative analysis on bangla handwritten digit recognition with data augmentation and non-augmentation process,” in 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), pp. 1–5, IEEE, 2020. [19] M. M. Rahman, S. M. Shaiban, S. S. Hasan, M. R. Tanjim, and M. A. Khan, “Forensic analysis of bangla handwritten letters,” in Proceedings of the 8th International Conference on Computer and Communications Management, pp. 74–78, 2020. [20] M. M. Rahman, M. S. Islam, R. Sassi, and M. Aktaruzzaman, “Convolutional neural networks performance comparison for handwritten bengali numerals recognition,” SN Applied Sciences, vol. 1, no. 12, pp. 1–11, 2019. [21] M. F. Sikder, “Bangla handwritten digit recognition and generation,” in Proceedings of International Joint Conference on Computational Intelligence, pp. 547–556, Springer, 2020. [22] M. Zahangir Alom, P. Sidike, M. Hasan, T. M. Taha, and V. K. Asari, “Handwritten bangla character recognition using the state-of-art deep convolutional neural networks,” arXiv e-prints, pp. arXiv–1712, 2017. [23] Y. Zhu, S. Suri, P. Kulkarni, Y. Chen, J. Duan, and C.-C. J. Kuo, “An interpretable generative model for handwritten digits synthesis,” in 2019 IEEE 36 International Conference on Image Processing (ICIP), pp. 1910–1914, IEEE, 2019. [24] M. N. Hoq, N. A. Nipa, M. M. Islam, and S. Shahriar, “Bangla handwritten character recognition: an overview of the state of the art classification algorithm with new dataset,” in 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT), pp. 1–6, IEEE, 2019. [25] Z. K. Nishat and M. Shopon, “Synthetic class specific bangla handwritten character generation using conditional generative adversarial networks,” in 2019 International Conference on Bangla Speech and Language Processing (ICBSLP), pp. 1–5, IEEE, 2019. [26] M. J. Hasan, M. F. Wahid, M. S. Alom, and M. M. A. Mia, “A new state of art deep learning approach for bangla handwritten digit recognition using svm classifier,” in 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1–6, IEEE, 2020. [27] T. Mahmud, A. R. Hossain, and S. A. Fattah, “Deepbanglanet: A deep convolutional neural network to recognize bengali handwritten digits,” in 2020 IEEE Region 10 Symposium (TENSYMP), pp. 742–745, IEEE, 2020. [28] S. Ghosh, A. Chatterjee, P. K. Singh, S. Bhowmik, and R. Sarkar, “Languageinvariant novel feature descriptors for handwritten numeral recognition,” The Visual Computer, pp. 1–23, 2020. [29] M. B. Hossain, A. Adhikary, and S. J. Soheli, “Sign language digit recognition using different convolutional neural network model,” Asian Journal of Research in Computer Science, pp. 16–24, 2020. [30] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡ 0.5 mb model size,” arXiv preprint arXiv:1602.07360, 2016. 37 [31] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” Advances in neural information processing systems, vol. 25, pp. 1097–1105, 2012. | en_US |
dc.identifier.uri | http://hdl.handle.net/123456789/1314 | |
dc.description | Supervised by Dr.Hasanul Kabir Professor, and Co-Supervisor, Sabbir Ahmed Lecturer Department of Computer Science and Engineering (CSE), Islamic University of Technology (IUT), OIC | en_US |
dc.description.abstract | Handwritten digit recognition has consistently a major test because of its variety of shape, size, and composing style.Accurate Handwritten Digit Recognition is becoming challenging and thoughtful to researchers due to its educational and economic values.Most of the To benchmark Bengali digit acknowledgment calculations, a huge openly accessible dataset is required which is liberated from inclinations starting from topographical area, sexual orientation, and age.In light of this point, NumtaDB, a dataset comprising of something else than 85,000 pictures of transcribed Bengali digits, has been amassed.The challenges of NumtaDB data set is that it contains unbiased, unprocessed and augmented images.So for this reason different kinds preprocessing steps were followed to process the available data and A simplistic fast approach to Bangla Handwritten digit recognition using Convolution Neural Network is proposed. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Department of Computer Science and Engineering(CSE), Islamic University of Technology(IUT), Board Bazar, Gazipur, Bangladesh | en_US |
dc.subject | Convolutional Neural Network, handwritten digit recognition, Bangla handwritten digits, Image Preprocessing | en_US |
dc.title | A Simplistic & Fast approach to Bangla Handwritten Digit Recognition using Convolutional Neural Network | en_US |
dc.type | Thesis | en_US |