Concept of Eco Scrubbing Technology: A CFD case study in small furnace

Show simple item record

dc.contributor.author Zidan, Md. Abidur Rahman
dc.contributor.author Shihab, S.M. Samiul Bashir
dc.contributor.author Suprova, Nabila Tabassum
dc.contributor.author Aktab, Mohd. Mahir
dc.date.accessioned 2022-04-17T01:59:16Z
dc.date.available 2022-04-17T01:59:16Z
dc.date.issued 2021-03-30
dc.identifier.citation [1] T. F. Wall, “Combustion processes for carbon capture,” Proc. Combust. Inst., vol. 31 I, no. 1, pp. 31–47, 2007, doi: 10.1016/j.proci.2006.08.123. [2] J. Davison, “Performance and costs of power plants with capture and storage of CO2,” Energy, vol. 32, no. 7, pp. 1163–1176, 2007, doi: https://doi.org/10.1016/j.energy.2006.07.039. [3] P. H. M. Feron and C. A. Hendriks, “CO 2 Capture Process Principles and Costs,” 2005. Accessed: Mar. 14, 2021. [Online]. Available: https://ogst.ifpenergiesnouvelles.fr/articles/ogst/abs/2005/03/feron1_vol60n3. [4] Y. Tan, E. Croiset, M. A. Douglas, and K. V Thambimuthu, “Combustion characteristics of coal in a mixture of oxygen and recycled flue gas,” Fuel, vol. 85, no. 4, pp. 507–512, 2006, doi: https://doi.org/10.1016/j.fuel.2005.08.010. [5] K. Jordal, M. Anheden, J. Yan, and L. Strömberg, “- Oxyfuel combustion for coal-fired power generation with CO2 capture—Opportunities and challenges,” in Greenhouse Gas Control Technologies 7, E. S. Rubin, D. W. Keith, C. F. Gilboy, M. Wilson, T. Morris, J. Gale, and K. Thambimuthu, Eds. Oxford: Elsevier Science Ltd, 2005, pp. 201–209. [6] J. D. Figueroa, T. Fout, S. Plasynski, H. Mcilvried, and R. D. Srivastava, “doi:10.1016/S1750-5836(07)00094-1,” Elsevier, doi: 10.1016/S1750-5836(07)00094-1. [7] J. N. Knudsen, J. N. Jensen, P.-J. Vilhelmsen, and O. Biede, “First year operation experience with a 1 t/h CO 2 absorption pilot plant at Esbjerg coal-fired power plant.” Accessed: Mar. 14, 2021. [Online]. Available: www.co2castor.com. [8] J. Riaza, M. V. Gil, L. Álvarez, C. Pevida, J. J. Pis, and F. Rubiera, “Oxy-fuel combustion of coal and biomass blends,” Energy, vol. 41, no. 1, pp. 429–435, 2012, doi: 10.1016/j.energy.2012.02.057. [9] B. J. P. Buhre, L. K. Elliott, C. D. Sheng, R. P. Gupta, and T. F. Wall, “Oxy-fuel combustion technology for coal-fired power generation,” Elsevier, doi: 10.1016/j.pecs.2005.07.001. [10] N. Nakicenovic, “World energy outlook 2007: China and India insights,” 2007, Accessed: Mar. 14, 2021. [Online]. Available: http://pure.iiasa.ac.at/id/eprint/12557/. [11] M. C. Grimston, V. Karakoussis, R. Fouquet, R. Van der Vorst, P. Pearson, and M. Leach, “The European and global potential of carbon dioxide sequestration in tackling climate change,” Clim. Policy, vol. 1, no. 2, pp. 155–171, 2001, doi: 10.3763/cpol.2001.0120. [12] C. F. Baes, S. E. Beall, D. W. Lee, and G. Marland, “COLLECTION, DISPOSAL, AND STORAGE OF CARBON DIOXIDE.,” 1980, pp. 495–519, doi: 10.1007/978-94-009-9111-8_28. [13] F. Gozalpour, S. R. Ren, and B. Tohidi, “CO 2 EOR and Storage in Oil Reservoirs,” 2005. Accessed: Mar. 14, 2021. [Online]. Available: http://www.ieagreen.org.uk/sept32.htm. [14] R. K. Varagani et al., “Fourth Annual Conference on Carbon Sequestration.” Accessed: Mar. 14, 2021. [Online]. Available: https://www.academia.edu/download/48754896/Performance_simulation_and_cost_assessme20160911-23977-5teyht.pdf. [15] K. G. Knauss, J. W. Johnson, C. I. Steefel, and J. J. Nitao, “Evaluation of the impact of CO 2 , aqueous 65 fluid, and reservoir rock interactions on the geologic sequestration of CO 2 , with special emphasis on economic implications.” Accessed: Mar. 14, 2021. [Online]. Available: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.205.588&rep=rep1&type=pdf. [16] J. Gibbins and H. Chalmers, “Carbon capture and storage,” Energy Policy, vol. 36, no. 12, pp. 4317–4322, 2008, doi: 10.1016/j.enpol.2008.09.058. [17] B. Metz, O. Davidson, R. Swart, and J. Pan, Climate change 2001: mitigation: contribution of Working Group III to the third assessment report of the Intergovernmental Panel on Climate Change. 2001. [18] W. Gunter, S. Wong, D. Cheel, G. S.-A. Energy, and undefined 1998, “Large CO2 sinks: their role in the mitigation of greenhouse gases from an international, national (Canadian) and provincial (Alberta) perspective,” Elsevier, Accessed: Mar. 14, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0306261998000427. [19] P. Freund, … J. D. I. W. on C. D. C. and, and undefined 2002, “WORKSHOP ON CARBON DIOXIDE CAPTURE AND STORAGE PROCEEDINGS.” Accessed: Mar. 14, 2021. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.167.3697&rep=rep1&type=pdf#page=80. [20] S. Solomon, M. Carpenter, T. F.-I. journal of greenhouse, and undefined 2008, “Intermediate storage of carbon dioxide in geological formations: a technical perspective,” Elsevier, Accessed: Mar. 14, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1750583608000352. [21] M. Sander, C. M.-E. C. and management, and undefined 1992, “The Fluor Daniel® econamine FG process: Past experience and present day focus,” Elsevier, Accessed: Mar. 14, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/019689049290029V. [22] M. Pehnt, J. H.-I. J. of G. G. Control, and undefined 2009, “Life cycle assessment of carbon dioxide capture and storage from lignite power plants,” Elsevier, Accessed: Mar. 14, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1750583608000650. [23] M. Fischedick, D. Schuewer, W. Guenster, H. F.-V. PowerTech, and undefined 2006, “Separation in power plants. Do retrofits make sense in existing plants?; CO {sub 2}-Abtrennung im Kraftwerk. Ist eine Nachruestung fuer bestehende Anlagen sinnvoll,” osti.gov, Accessed: Mar. 14, 2021. [Online]. Available: https://www.osti.gov/etdeweb/biblio/20752812. [24] M. Abu-Khader, “Recent progress in CO2 capture/sequestration: A review,” Energy Sources, Part A: Recovery, Utilization and Environmental Effects, vol. 28, no. 14. pp. 1261–1279, Oct. 01, 2006, doi: 10.1080/009083190933825. [25] R. Allam, C. S.-E. C. and Management, and undefined 1992, “A study of the extraction of CO2 from the flue gas of a 500 MW pulverised coal fired boiler,” Elsevier, Accessed: Mar. 14, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/019689049290033S. [26] B. Cailly, P. Le Thiez, P. Egermann, A. Audibert, S. Vidal-Gilbert, and X. Longaygue, “Geological Storage of CO 2 : A State-of-the-Art of Injection Processes and Technologies,” 2005. Accessed: Mar. 14, 2021. [Online]. Available: https://ogst.ifpenergiesnouvelles.fr/articles/ogst/abs/2005/03/cailly_vol60n3. [27] M. Bentham and G. Kirby, “CO 2 Storage in Saline Aquifers,” 2005. Accessed: Mar. 14, 2021. [Online]. Available: https://ogst.ifpenergiesnouvelles.fr/articles/ogst/abs/2005/03/benthman_vol60n3. [28] S. Reddy, J. Scherffius, S. Freguia, and C. Roberts, “Fluor’s Econamine FG Plus SM Technology An Enhanced Amine-Based CO 2 Capture Process FLUOR’S ECONAMINE FG PLUS SM 66 TECHNOLOGY: AN ENHANCED AMINE-BASED CO 2 CAPTURE PROCESS Background: Econamine FG SM Process.” Accessed: Mar. 14, 2021. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.453.2668&rep=rep1&type=pdf. [29] J. Oexmann, A. K.-E. Procedia, and undefined 2009, “Post-combustion CO2 capture in coal-fired power plants: comparison of integrated chemical absorption processes with piperazine promoted potassium carbonate and,” Elsevier, Accessed: Mar. 14, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1876610209001076. [30] M. Kanniche, R. Gros-Bonnivard, P. Jaud, J. Valle-Marcos, J.-M. Amann, and C. Bouallou, “Pre-combustion, Post-combustion and Oxy-combustion in thermal power plant for CO capture,” Appl. Therm. Eng., vol. 30, no. 1, p. 53, 2009, doi: 10.1016/j.applthermaleng.2009.05.005ï. [31] C. Descamps, C. Bouallou, M. K.- Energy, and undefined 2008, “Efficiency of an Integrated Gasification Combined Cycle (IGCC) power plant including CO2 removal,” Elsevier, Accessed: Mar. 14, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0360544207001260. [32] M. Okawa, N. Kimura, T. Kiga, S. Takano, … K. A.-E. conversion and, and undefined 1997, “Trial design for a CO2 recovery power plant by burning pulverized coal in O2CO2,” Elsevier, Accessed: Mar. 14, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0196890496002579. [33] G. N. (2005) Altmann, H., & Stamatelopoulos, “Altmann, H., & Stamatelopoulos, G. N. (2005). Steps towards the minimisation of CO2 emissions from coal-fired power plants. In Proceedings of Power Gen.” [34] M. E.-V. PowerTech and undefined 2005, “The significance of power stations with CO {sub 2} capture in planning future generation portfolio; Die Bedeutung von Kraftwerken mit CO {sub 2}-Abtrennung fuer,” osti.gov, Accessed: Mar. 14, 2021. [Online]. Available: https://www.osti.gov/etdeweb/biblio/20688964. [35] D. Singh, E. Croiset, P. L. Douglas, and M. A. Douglas, “Techno-economic study of CO 2 capture from an existing coal-fired power plant: MEA scrubbing vs. O 2 /CO 2 recycle combustion,” Energy Convers. Manag., vol. 44, pp. 3073–3091, 2003, doi: 10.1016/S0196-8904(03)00040-2. [36] and A. M. Xu, B., R. A. Stobbs, V. White, R. A. Wall, J. Gibbins, M. Iijima, “Xu, B., R. A. Stobbs, V. White, R. A. Wall, J. Gibbins, M. Iijima, and A. MacKenzie. ‘Future CO2 capture technology options for the Canadian market.’ Report No. COAL R309 BERR/Pub URN 7 (2007): 1251.” [37] K. Damen, M. van Troost, … A. F.-P. in E. and, and undefined 2007, “A comparison of electricity and hydrogen production systems with CO2 capture and storage—Part B: Chain analysis of promising CCS options,” Elsevier, Accessed: Mar. 14, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0360128507000196. [38] K. Damen, M. van Troost, … A. F.-P. in energy and, and undefined 2006, “A comparison of electricity and hydrogen production systems with CO2 capture and storage. Part A: Review and selection of promising conversion and capture,” Elsevier, Accessed: Mar. 14, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0360128505000626. [39] C. R. Shaddix, “Effect of Syngas Composition and CO2-Diluted Oxygen on Performance of a Premixed Swirl-Stabilized Combustor,” Taylor Fr., vol. 180, no. 1, pp. 64–88, Jan. 2008, doi: 10.1080/00102200701487061. [40] P. F.-I. J. of G. G. Control and undefined 2010, “Exploring the potential for improvement of the energy 67 performance of coal fired power plants with post-combustion capture of carbon dioxide,” Elsevier, Accessed: Mar. 14, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S175058360900139X. [41] S. Lee et al., “A study on the carbon dioxide recovery from 2 ton-CO2/day pilot plant at LNG based power plant,” Elsevier, Accessed: Mar. 14, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0016236107003523. [42] R. Notz, N. Asprion, I. Clausen, and H. Hasse, “SELECTION AND PILOT PLANT TESTS OF NEW ABSORBENTS FOR POST COMBUSTION CARBON DIOXIDE CAPTURE.” Accessed: Mar. 14, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0263876207730745. [43] J. Wheeldon, G. Booras, and N. Holt, “Re-evaluation of post-combustion CO {sub 2} capture from pulverized coal plants,” 2006, Accessed: Mar. 14, 2021. [Online]. Available: https://www.osti.gov/etdeweb/biblio/20847500. [44] J. Beér, “High Efficiency Electric Power Generation; The Environmental Role.” Accessed: Mar. 14, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0360128506000347. [45] T. Wall et al., “An overview on oxyfuel coal combustion-State of the art research and technology development,” Chem. Eng. Res. Des., vol. 87, no. 8, pp. 1003–1016, 2009, doi: 10.1016/j.cherd.2009.02.005. [46] F. J. Higuera, “Combustion of a coal char particle in a stream of dry gas,” Combust. Flame, vol. 152, no. 1–2, pp. 230–244, 2008, doi: 10.1016/j.combustflame.2007.06.001. [47] S. Dutta, C. Y. Wen, and R. J. Belt, “Reactivity of Coal and Char. 1. In Carbon Dioxide Atmosphere,” Ind. Eng. Chem. Process Des. Dev., vol. 16, no. 1, pp. 20–30, 1977, doi: 10.1021/i260061a004. [48] A. Makino, N. Araki, and Y. Mihara, “Combustion of artificial graphite in stagnation flow: Estimation of global kinetic parameters from experimental results,” Combust. Flame, vol. 96, no. 3, pp. 261–274, 1994, doi: 10.1016/0010-2180(94)90013-2. [49] Research Fund for Coal and Steel, “Summaries of RFCS Projects 2003-2014,” 2013. [50] M. Houkema et al., “Application of the biomass, oxyfuel and flameless combustion for the utilisation of pulverised coals for electricity generation (BOFCom),” pp. 2–4, 2012. [51] C. Sheng, Y. Lu, X. Gao, and H. Yao, “Fine ash formation during pulverized coal combustion - A comparison of O2/CO2 combustion versus air combustion,” Energy and Fuels, vol. 21, no. 2, pp. 435–440, 2007, doi: 10.1021/ef060420v. [52] F. Wigley, J. Williamson, and G. Riley, “The effect of mineral additions on coal ash deposition,” Fuel Process. Technol., vol. 88, no. 11–12, pp. 1010–1016, 2007, doi: 10.1016/j.fuproc.2007.06.008. [53] C. F. Alie, “CO2 Capture With MEA: Integrating the Absorption Process and Steam Cycle of an Existing Coal-Fired Power Plant,” Master Thesis Univ. Waterloo, pp. 1–2, 2004. [54] IEAGHG, “IEA GHG WORKSHOP ON OPERATING FLEXIBILITY OF POWER PLANTS WITH CCS Report : 2010 / 1 January 2010,” no. January, 2010. [55] L. D. (American P. P. A. Carter, “Retrofitting Carbon Capture Systems on Existing Coal-fired Power Plants A White Paper for the American Public Power Association (APPA) L.D.,” pp. 1–16, 2007. [56] D. Mcdonald and A. Zadiraka, “Control of Pulverized Coal Oxy-Combustion Systems.” [57] “2. Vitalis, B. Overview of oxy-combustion technology... - Google Scholar.” . 68 [58] P. Edge, P. Heggs, … M. P.-A. thermal, and undefined 2013, “Integrated fluid dynamics-process modelling of a coal-fired power plant with carbon capture,” Elsevier. [59] M. Toftegaard, J. Brix, P. Jensen, P. G.-… and combustion science, and undefined 2010, “Oxy-fuel combustion of solid fuels,” Elsevier. [60] “R. Tan, et al., Oxy-coal combustion with flue gas... - Google Scholar.” . [61] M. A.-K.-E. Sources, P. A, and undefined 2006, “Recent Progress in CO2 Capture/Sequestration: A Review,” Taylor Fr. [62] J. D.- Energy and undefined 2007, “Performance and costs of power plants with capture and storage of CO2,” Elsevier. [63] J. Gibbins and H. Chalmers, “Preparing for global rollout: A ‘developed country first’ demonstration programme for rapid CCS deployment,” Energy Policy, vol. 36, pp. 501–507, 2008, doi: 10.1016/j.enpol.2007.10.021. [64] M. F.-M. power systems and undefined 2006, “Developing oxyfuel capture as a retrofit technology,” osti.gov. [65] R. Soundararajan, T. G.-A. thermal engineering, and undefined 2013, “Coal based power plants using oxy-combustion for CO2 capture: Pressurized coal combustion to reduce capture penalty,” Elsevier. [66] D. Singh, E. Croiset, P. Douglas, M. D.-E. conversion and, and undefined 2003, “Techno-economic study of CO2 capture from an existing coal-fired power plant: MEA scrubbing vs. O2/CO2 recycle combustion,” Elsevier. [67] K. Andersson, F. J.-E. C. and Management, and undefined 2006, “Process evaluation of an 865 MWe lignite fired O2/CO2 power plant,” Elsevier. [68] “Okazaki K, Ando T. NOx reduction mechanism in coal... - Google Scholar.” . [69] Y. Hu, N. Kobayashi, M. H.- Fuel, and undefined 2001, “The reduction of recycled-NOx in coal combustion with O2/recycled flue gas under low recycling ratio,” Elsevier. [70] H. Liu, K. O.- Fuel, and undefined 2003, “Simultaneous easy CO2 recovery and drastic reduction of SOx and NOx in O2/CO2 coal combustion with heat recirculation☆,” Elsevier. [71] S. Moazzem, M. Rasul, M. K.-A. thermal engineering, and undefined 2013, “Energy recovery opportunities from mineral carbonation process in coal fired power plant,” Elsevier. [72] J. Figueroa, T. Fout, S. Plasynski, H. M.-… greenhouse gas control, and undefined 2008, “Advances in CO2 capture technology—the US Department of Energy’s Carbon Sequestration Program,” Elsevier. [73] L. I. Eide et al., “Novel Capture Processes,” 2005. [74] M. Hossain, H. de L.-C. E. Science, and undefined 2008, “Chemical-looping combustion (CLC) for inherent CO2 separations—a review,” Elsevier. [75] “13. Effect of Chemical Reaction Mechanisms and NOx... - Google Scholar.” . [76] A. Eaton, L. Smoot, S. Hill, C. E.-P. in energy and, and undefined 1999, “Components, formulations, solutions, evaluation, and application of comprehensive combustion models,” Elsevier. [77] M. Xu, J. L. T. Azevedo, and M. G. Carvalho, “Modelling of the combustion process and NO x emission in a utility boiler.” [78] S. Belosevic, M. Sijercic, S. Oka, D. T.-I. journal of heat, and undefined 2006, “Three-dimensional modeling of utility boiler pulverized coal tangentially fired furnace,” Elsevier. 69 [79] A. Bosoaga, N. Panoiu, L. Mihaescu, R. Backreedy, L. M.- Fuel, and undefined 2006, “The combustion of pulverised low grade lignite,” Elsevier. [80] L. Diez, C. Cortes, J. P.- Fuel, and undefined 2008, “Numerical investigation of NOx emissions from a tangentially-fired utility boiler under conventional and overfire air operation,” Elsevier. [81] S. Belosevic, V. Beljanski, I. Tomanovic, N. Crnomarkovic, D. Tucakovic, and T. Zivanovic, “Numerical analysis of NO x control by combustion modifications in pulverized coal utility boiler,” in Energy and Fuels, Jan. 2012, vol. 26, no. 1, pp. 425–442, doi: 10.1021/ef201380z. [82] N. Nikolopoulos, A. Nikolopoulos, E. Karampinis, P. Grammelis, and E. Kakaras, “Numerical investigation of the oxy-fuel combustion in large scale boilers adopting the ECO-Scrub technology,” Fuel, vol. 90, no. 1, pp. 198–214, 2011, doi: 10.1016/j.fuel.2010.08.007. [83] “Abraham BM, Asbury JG, Lynch EP, Teotia APS. Oil... - Google Scholar.” . [84] “Wang CS, Berry GF, Chang KC, Wolsky AM. Combust Flame... - Google Scholar.” . [85] “Payne R, Chen SL, Wolsky AM, Richter WF. Combust... - Google Scholar.” . [86] “Kimura N, Omata K, Takano S, Shikisima S. Energy... - Google Scholar.” . [87] “Kiga T, Takano S, Kimura N, Omata K, Okawa M, Mori... - Google Scholar.” . [88] “Nozaki T, Takano S, Kiga T, Omata K, Kimura N. Energy... - Google Scholar.” . [89] “Hu Y, Natio S, Kobayashi N, Hasatani M. Fuel 2000;79:1925... - Google Scholar.” . [90] “Croiset E, Thambimuthu K, Palmer A. Can J Chem Eng... - Google Scholar.” . [91] “] Croiset E, Thambimuthu K. Fuel 2001;80:2117–21. - Google Scholar.” . [92] “Chui EH, Douglas MA, Tan Y. Fuel 2003;82:1201–10. - Google Scholar.” . [93] “Chui EH, Majeski AJ, Douglas MA, Tan Y, Thambimuthu... - Google Scholar.” . [94] A. Doukelis, I. Vorrias, P. Grammelis, E. Kakaras, M. Whitehouse, and G. Riley, “Partial O2-fired coal power plant with post-combustion CO2 capture: A retrofitting option for CO2 capture ready plants,” Fuel, vol. 88, no. 12, pp. 2428–2436, 2009, doi: 10.1016/j.fuel.2009.05.017. [95] J. H.-T. science of climate change and undefined 1986, “IPCC (Intergovernmental Panel on Climate Change),” ci.nii.ac.jp. [96] “VGB Powertech. Separation and sequestration of CO2... - Google Scholar.” . [97] “Department of Trade and Industry (DTI), Carbon dioxide... - Google Scholar.” . [98] S. Hjärtstam, K. Andersson, F. Johnsson, B. L.- Fuel, and undefined 2009, “Combustion characteristics of lignite-fired oxy-fuel flames,” Elsevier. [99] K. Andersson, F. Normann, F. Johnsson, and B. Leckner, “NO emission during oxy-fuel combustion of lignite,” Ind. Eng. Chem. Res., vol. 47, no. 6, pp. 1835–1845, Mar. 2008, doi: 10.1021/ie0711832. [100] C. Sheng, Y. L.- Fuel, and undefined 2008, “Experimental study of ash formation during pulverized coal combustion in O2/CO2 mixtures,” Elsevier. [101] Y. Qiao, L. Zhang, E. Binner, M. Xu, C. L.- Fuel, and undefined 2010, “An investigation of the causes of the difference in coal particle ignition temperature between combustion in air and in O2/CO2,” Elsevier. [102] L. Zhang, E. Binner, Y. Qiao, C. L.- Fuel, and undefined 2010, “In situ diagnostics of Victorian brown coal combustion in O2/N2 and O2/CO2 mixtures in drop-tube furnace,” Elsevier. [103] E. Chui, M. Douglas, Y. T.- Fuel, and undefined 2003, “Modeling of oxy-fuel combustion for a western 70 Canadian sub-bituminous coal☆,” Elsevier. [104] S. Khare, T. Wall, A. Farida, Y. Liu, B. M.- Fuel, and undefined 2008, “Factors influencing the ignition of flames from air-fired swirl pf burners retrofitted to oxy-fuel,” Elsevier. [105] F. Normann, K. Andersson, B. Leckner, F. J.- Fuel, and undefined 2008, “High-temperature reduction of nitrogen oxides in oxy-fuel combustion,” Elsevier. [106] A. Al-Abbas, J. Naser, D. D.- Fuel, and undefined 2011, “CFD modelling of air-fired and oxy-fuel combustion of lignite in a 100 KW furnace,” Elsevier. [107] E. Kakaras, A. Koumanakos, A. D.- Fuel, and undefined 2007, “Oxyfuel boiler design in a lignite-fired power plant,” Elsevier. [108] E. Croiset, K. T.- Fuel, and undefined 2001, “NOx and SO2 emissions from O2/CO2 recycle coal combustion,” Elsevier. [109] “Chaˆtel-Pe´lage F, Marin O, Perrin N, Carty R,... - Google Scholar.” . [110] “Marin O, Chaˆtel-Pe´lage F, Perrin N, Chen S, Lu... - Google Scholar.” . [111] “Combustion characteristics of coal in a mixture of... - Google Scholar.” . [112] T. Suda, K. Masuko, J. Sato, A. Yamamoto, K. O.- Fuel, and undefined 2007, “Effect of carbon dioxide on flame propagation of pulverized coal clouds in CO2/O2 combustion,” Elsevier. [113] L. Zhang, E. Binner, Y. Qiao, C. L.-E. & fuels, and undefined 2010, “High-Speed Camera Observation of Coal Combustion in Air and O2/CO2 Mixtures and Measurement of Burning Coal Particle Velocity,” ACS Publ. [114] Z. Tian, P. Witt, M. Schwarz, W. Y.-E. & fuels, and undefined 2010, “Numerical modeling of Victorian brown coal combustion in a tangentially fired furnace,” ACS Publ. [115] “Wall T, Liu Y, Spero C, Elliott L, Khare S, Rathnam... - Google Scholar.” . [116] Y. Tan, E. Croiset, M. Douglas, K. T.- Fuel, and undefined 2006, “Combustion characteristics of coal in a mixture of oxygen and recycled flue gas,” Elsevier. [117] M. Habermehl, J. Erfurth, D. Toporov, … M. F.-A. T., and undefined 2012, “Experimental and numerical investigations on a swirl oxycoal flame,” Elsevier. [118] S. Black, J. Szuhánszki, A. Pranzitelli, L. Ma, P. S.- Fuel, and undefined 2013, “Effects of firing coal and biomass under oxy-fuel conditions in a power plant boiler using CFD modelling,” Elsevier. [119] C. Yin, L. Rosendahl, S. K.- Fuel, and undefined 2011, “Chemistry and radiation in oxy-fuel combustion: a computational fluid dynamics modeling study,” Elsevier. [120] J. Fan, L. Qian, Y. Ma, P. Sun, K. C.-C. E. Journal, and undefined 2001, “Computational modeling of pulverized coal combustion processes in tangentially fired furnaces,” Elsevier. [121] A. Al-Abbas, J. Naser, D. Dodds, A. B.-P. Engineering, and undefined 2013, “Numerical modelling of oxy-fuel combustion in a full-scale tangentially-fired pulverised coal boiler,” Elsevier. [122] “A.H. Al-Abbas, J. Hart, J. Naser, Numerical investigation... - Google Scholar.” . [123] B. Buhre, L. Elliott, C. Sheng, … R. G.-P. in energy and, and undefined 2005, “Oxy-fuel combustion technology for coal-fired power generation,” Elsevier. [124] L. Chen, Z. Yong, and A. F. Ghoniem, “Oxy-fuel combustion of pulverized coal: Characterization, fundamentals, stabilization and CFD modeling,” Elsevier, 2012, doi: 10.1016/j.pecs.2011.09.003. [125] H. Liu, R. Zailani, B. G.- Fuel, and undefined 2005, “Comparisons of pulverized coal combustion in air 71 and in mixtures of O2/CO2,” Elsevier. [126] “Intergovernmental Panel on Climate Change (IPCC).... - Google Scholar.” . [127] H. Kaß, S. Tappe, H. K.-E. Procedia, and undefined 2009, “The combustion of dry lignite under oxy-fuel process conditions in a 0.5 MWth test plant,” Elsevier. [128] M. Vascellari, G. C.- Fuel, and undefined 2012, “Influence of turbulence–chemical interaction on CFD pulverized coal MILD combustion modeling,” Elsevier. [129] “Croisey, Thambimuthu, coal combustion with flue gas... - Google Scholar.” . [130] J. Erfurth, D. Toporov, M. Foerster, and R. Kneer, “Numerical simulation of a 1200 MWth pulverised fuel oxy-firing furnace,” 2009. [131] A. A. Bhuiyan and J. Naser, “Thermal characterization of coal/straw combustion under air/oxy-fuel conditions in a swirl-stabilized furnace: A CFD modelling,” Appl. Therm. Eng., vol. 93, pp. 639–651, 2016, doi: 10.1016/j.applthermaleng.2015.10.024. [132] M. Simmonds, I. Miracca, and K. Gerdes, “OXYFUEL TECHNOLOGIES FOR CO 2 CAPTURE: A TECHNO-ECONOMIC OVERVIEW.” Accessed: Mar. 14, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780080447049501178. [133] “] S.V. Patankar, D.B. Spalding, A calculation procedure... - Google Scholar.” . [134] S. V. Patankar and D. B. Spalding, “A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows,” Int. J. Heat Mass Transf., vol. 15, no. 10, pp. 1787–1806, 1972, doi: 10.1016/0017-9310(72)90054-3. [135] R. G. Stanton and P. H. Dirksen, “Computation of g(1,3;12),” pp. 232–239, 1976, doi: 10.1007/bfb0097385. [136] N. Kimura, K. Omata, T. Kiga, S. Takano, and S. Shikisima, “The characteristics of pulverized coal combustion in O2/CO2 mixtures for CO2 recovery,” Energy Convers. Manag., vol. 36, no. 6–9, pp. 805–808, 1995, doi: 10.1016/0196-8904(95)00126-X. [137] H. Liu, R. Zailani, and B. M. Gibbs, “Comparisons of pulverized coal combustion in air and in mixtures of O 2/CO 2,” Fuel, vol. 84, no. 7–8, pp. 833–840, 2005, doi: 10.1016/j.fuel.2004.11.018. [138] T. Suda, K. Masuko, J. Sato, A. Yamamoto, and K. Okazaki, “Effect of carbon dioxide on flame propagation of pulverized coal clouds in CO2/O2 combustion,” Fuel, vol. 86, no. 12–13, pp. 2008–2015, 2007, doi: 10.1016/j.fuel.2006.11.038. [139] X. Huang, X. Jiang, X. Han, and H. Wang, “Combustion characteristics of fine- and micro-pulverized coal in the mixture of O2/CO2,” Energy and Fuels, vol. 22, no. 6, pp. 3756–3762, Nov. 2008, doi: 10.1021/ef800444c. [140] F. C. Lockwood and N. G. Shah, “A new radiation solution method for incorporation in general combustion prediction procedures,” Symp. Combust., vol. 18, no. 1, pp. 1405–1414, 1981, doi: 10.1016/S0082-0784(81)80144-0. [141] C. Y. Chow, “An introduction to computational fluid mechanics.,” vol. M, 1979, doi: 10.1016/0010-4655(80)90010-7. [142] J. D.-J. of computational Physics and undefined 1980, “A particle-fluid numerical model for liquid sprays,” Elsevier, Accessed: Mar. 14, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/002199918090087X. 72 [143] L. S.-Z. V. D. Ing. and undefined 1933, “A drag coefficient correlation,” ci.nii.ac.jp, Accessed: Mar. 14, 2021. [Online]. Available: https://ci.nii.ac.jp/naid/10030159157/. [144] D. S.-S. (International) on combustion and undefined 1971, “Mixing and chemical reaction in steady confined turbulent flames,” Elsevier, Accessed: Mar. 14, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S008207847180067X. [145] B. H. Hjertager, B. F. Magnussen, and B. H. Hjertager, “On mathematically modeling with special emphasis on soot formation and combustion ON MATHEMATICAL MODELING OF TURBULENT COMBUSTION WITH SPECIAL EMPHASIS ON SOOT FORMATION AND COMBUSTION,” 1977. Accessed: Mar. 14, 2021. [Online]. Available: https://www.researchgate.net/publication/313474751. [146] A. Al-Abbas, J. N.-E. & Fuels, and undefined 2012, “Effect of Chemical Reaction Mechanisms and NOx Modeling on Air-Fired and Oxy-Fuel Combustion of Lignite in a 100-kW Furnace,” ACS Publ. [147] “Al-Abbas AH, Naser J, Dodds D. CFD modelling of air-fired... - Google Scholar.” . [148] R. Hurt, J. C.-C. and flame, and undefined 2001, “Semi-global intrinsic kinetics for char combustion modeling,” Elsevier. [149] V. Dupont, M. Pourkashanian, A. Williams, R. W.- Fuel, and undefined 1993, “The reduction of NOx formation in natural gas burner flames,” Elsevier. [150] A. Frassoldati, S. Frigerio, E. Colombo, … F. I.-C. E., and undefined 2005, “Determination of NOx emissions from strong swirling confined flames with an integrated CFD-based procedure,” Elsevier. [151] S. K. Choi, J. Kim, S. H. Chung, and J. S. Kim, “Structure of the edge flame in a methane-oxygen mixing layer,” Combust. Theory Model., vol. 13, no. 1, pp. 39–56, 2009, doi: 10.1080/13647830802363996. [152] A. Al-Abbas, J. N.-E. & fuels, and undefined 2012, “Numerical study of one air-fired and two oxy-fuel combustion cases of propane in a 100 kW furnace,” ACS Publ. [153] S. Badzioch, P. H.-I. & E. Chemistry, and undefined 1970, “Kinetics of thermal decomposition of pulverized coal particles,” ACS Publ. [154] F. Lockwood, T. Mahmud, M. Y.- Fuel, and undefined 1998, “Simulation of pulverised coal test furnace performance,” Elsevier. [155] M. Baum, P. S.-C. science and technology, and undefined 1971, “Predicting the combustion behaviour of coal particles,” Taylor Fr. [156] A. Bhuiyan, J. N.-A. T. Engineering, and undefined 2016, “Thermal characterization of coal/straw combustion under air/oxy-fuel conditions in a swirl-stabilized fur en_US
dc.identifier.uri http://hdl.handle.net/123456789/1333
dc.description Supervised by Dr. Arafat Ahmed Bhuiyan, Assistant Professor, Department of Chemical and Production Engineering(MPE), Islamic University of Technology(IUT), Board Bazar, Gazipur-1704, Bangladesh en_US
dc.description.abstract The substantial rise in CO2 percentage in the atmosphere owing to the increasing demand in electrical power is alarming and needs to be addressed. Coal continues to be a key fuel in global energy systems, accounting for nearly 40% of electricity generation. To resolve this situation, worldwide researchers are constantly investigating effective alternatives in a hope to establish a cost-effective eco-friendly power generation system. As such, eco-scrubbing technology is a trending retrofit option in existing plants. In the work presented in this paper, we performed a CFD modelled simulation on a unit of 30kW thermal load capacity. The objective of this study is to observe different combustion characteristics on four different cases: one air-firing reference case and three other oxy-fuel (25%, 30% and 35% O2) cases. We investigated about the different significant combustion characteristics such as temperature distribution over the furnace, O2 and CO2 mass fraction throughout the furnace and velocity distributions through the furnace and presented comparable results later on. The results indicated that an increase of oxygen concentration in the oxy-firing cases caused slight rise in the flame temperature with occurrence of burnout in advance under oxy-fuel conditions in comparison to air-fired conditions. en_US
dc.language.iso en en_US
dc.publisher Department of Civil and Environmental Engineering (CEE), Islamic University of Technology (IUT), Board Bazar, Gazipur, Bangladesh en_US
dc.title Concept of Eco Scrubbing Technology: A CFD case study in small furnace en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics