Design and Analysis of Plasmonic Couplers with Enhanced Performance

Show simple item record

dc.contributor.author Sumon, Md Saiful Islam
dc.date.accessioned 2022-04-17T02:58:04Z
dc.date.available 2022-04-17T02:58:04Z
dc.date.issued 2021-09-23
dc.identifier.citation [1] J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” Journal of Physics D: Applied Physics, vol. 45, no. 11, p. 113001, 2012. [2] D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature photonics, vol. 4, no. 2, pp. 83–91, 2010. [3] Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Optics express, vol. 18, no. 12, pp. 13 173–13 179, 2010. [4] Saber, Md Ghulam and Sagor, Rakibul Hasan, “Analysis of cuprous oxide-based ultra-compact nanoplasmonic coupler,” Applied Nanoscience, vol. 5, no. 2, pp. 217–221, 2015. [5] G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Optics Express, vol. 15, no. 3, pp. 1211–1221, 2007. [6] R. A. Wahsheh, Z. Lu, and M. A. Abushagur, “Nanoplasmonic couplers and splitters,” Optics Express, vol. 17, no. 21, pp. 19 033–19 040, 2009. [7] P. Ginzburg and M. Orenstein, “Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching,” Optics express, vol. 15, no. 11, pp. 6762–6767, 2007. [8] M. S. I. Sumon, M. O. Sharif, A. R. Anwar, S. S. Mahmud, and R. H. Sagor, “Theoretical investigation of a GaAs based novel air slot nano-plasmonic coupler,” in 2020 IEEE Region 10 Symposium (TENSYMP). IEEE, 2020, pp. 1123–1127. [9] R. A. Wahsheh and M. A. Abushagur, “Experimental and theoretical investigations of an air-slot coupler between dielectric and plasmonic waveguides,” Optics express, vol. 24, no. 8, pp. 8237–8242, 2016. 60 [10] Saber, Md Ghulam and Sagor, Rakibul Hasan, “Design and analysis of a gallium lanthanum sulfide based nanoplasmonic coupler yielding 67% efficiency.” [11] Saber, Md Ghulam and Sagor, Rakibul Hasan, “Design and study of nanoplasmonic couplers using aluminium arsenide and alumina,” IET Optoelectronics, vol. 9, no. 3, pp. 125–130, 2015. [12] E. D. Palik, Handbook of optical constants of solids. Academic press, 1998, vol. 3. [13] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” nature, vol. 424, no. 6950, pp. 824–830, 2003. [14] S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Physical review letters, vol. 86, no. 14, p. 3008, 2001. [15] J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors,” Sensors and actuators B: Chemical, vol. 54, no. 1-2, pp. 3–15, 1999. [16] G. Raschke, S. Brogl, A. Susha, A. Rogach, T. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl et al., “Gold nanoshells improve single nanoparticle molecular sensors,” Nano letters, vol. 4, no. 10, pp. 1853–1857, 2004. [17] J. Homola, “Present and future of surface plasmon resonance biosensors,” Analytical and bioanalytical chemistry, vol. 377, no. 3, pp. 528–539, 2003. [18] D. G. Georganopoulou, L. Chang, J.-M. Nam, C. S. Thaxton, E. J. Mufson, W. L. Klein, and C. A. Mirkin, “Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for alzheimer’s disease,” Proceedings of the National Academy of Sciences, vol. 102, no. 7, pp. 2273–2276, 2005. [19] K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (sers),” Physical review letters, vol. 78, no. 9, p. 1667, 1997. [20] A. M. Michaels, M. Nirmal, and L. Brus, “Surface enhanced raman spectroscopy of individual rhodamine 6g molecules on large ag nanocrystals,” Journal of the American Chemical Society, vol. 121, no. 43, pp. 9932–9939, 1999. [21] Y. Fang, H. Wei, F. Hao, P. Nordlander, and H. Xu, “Remote-excitation surfaceenhanced raman scattering using propagating ag nanowire plasmons,” Nano letters, vol. 9, no. 5, pp. 2049–2053, 2009. [22] P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” nature, vol. 459, no. 7245, pp. 410–413, 2009. 61 [23] C. Hermann, V. Kosobukin, G. Lampel, J. Peretti, V. Safarov, and P. Bertrand, “Surface-enhanced magneto-optics in metallic multilayer films,” Physical Review B, vol. 64, no. 23, p. 235422, 2001. [24] M. Westphalen, U. Kreibig, J. Rostalski, H. Lüth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Solar energy materials and solar cells, vol. 61, no. 1, pp. 97–105, 2000. [25] V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano letters, vol. 8, no. 12, pp. 4391–4397, 2008. [26] H. J. Lezec, A. Degiron, E. Devaux, R. Linke, L. Martin-Moreno, F. GarciaVidal, and T. Ebbesen, “Beaming light from a subwavelength aperture,” science, vol. 297, no. 5582, pp. 820–822, 2002. [27] G. Lerosey, D. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano letters, vol. 9, no. 1, pp. 327–331, 2009. [28] S. Maier, P. Kik, and H. Atwater, “a, meltzer, s., harel, e., koel, be, requicha, aag,” Nat. Mater, vol. 2, pp. 229–232, 2003. [29] R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” nature photonics, vol. 2, no. 8, p. 496, 2008. [30] Z. Han, A. Elezzabi, and V. Van, “Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform,” Optics letters, vol. 35, no. 4, pp. 502–504, 2010. [31] R. A. Wahsheh, Z. Lu, and M. A. Abushagur, “Experimental investigation of a nanoplasmonic air-slot coupler toward dense optical integrated circuits,” in Frontiers in Optics. Optical Society of America, 2015, pp. FW3E–2. [32] R. Yang, R. A. Wahsheh, Z. Lu, and M. A. Abushagur, “Efficient light coupling between dielectric slot waveguide and plasmonic slot waveguide,” Optics letters, vol. 35, no. 5, pp. 649–651, 2010. [33] B. Q. Zhu and H. K. Tsang, “High coupling efficiency silicon waveguide to metal–insulator–metal waveguide mode converter,” Journal of Lightwave Technology, vol. 34, no. 10, pp. 2467–2472, 2016. [34] B. Lau, M. A. Swillam, and A. S. Helmy, “Hybrid orthogonal junctions: wideband plasmonic slot-silicon waveguide couplers,” Optics express, vol. 18, no. 26, pp. 27 048–27 059, 2010. 62 [35] R. A. Wahsheh, Z. Lu, and M. A. Abushagur, “Nanoplasmonic air-slot coupler: design and fabrication,” in Frontiers in optics. Optical Society of America, 2012, pp. FTh4A–6. [36] R. Thomas, Z. Ikonic, and R. Kelsall, “Silicon based plasmonic coupler,” Optics express, vol. 20, no. 19, pp. 21 520–21 531, 2012. [37] M. T. Noghani and M. H. V. Samiei, “Ultrashort hybrid metal–insulator plasmonic directional coupler,” Applied optics, vol. 52, no. 31, pp. 7498–7503, 2013. [38] R. A. Wahsheh, Z. Lu, and M. A. Abushagur, “Ultra-compact integrated nanoplasmonic air-gap coupler,” in Frontiers in Optics. Optical Society of America, 2014, pp. FTh4E–5. [39] D. Kong and M. Tsubokawa, “Evaluation of slot-to-slot coupling between dielectric slot waveguides and metal-insulator-metal slot waveguides,” Optics express, vol. 23, no. 15, pp. 19 082–19 091, 2015. [40] M. B. Heydari, M. Asgari, and N. Jafari, “Novel analytical model for nanocoupler between metal–insulator–metal plasmonic and dielectric slab waveguides,” Optical and Quantum Electronics, vol. 50, no. 12, pp. 1–11, 2018. [41] S. H. Badri and M. Gilarlue, “Coupling between silicon waveguide and metaldielectric-metal plasmonic waveguide with lens-funnel structure,” Plasmonics, pp. 1–7, 2019. [42] A. D. Rakic, A. B. Djuriši ´ c, J. M. Elazar, and M. L. Majewski, “Optical proper- ´ ties of metallic films for vertical-cavity optoelectronic devices,” Applied optics, vol. 37, no. 22, pp. 5271–5283, 1998. [43] Z. L. Sámson, S.-C. Yen, K. F. MacDonald, K. Knight, S. Li, D. W. Hewak, D.-P. Tsai, and N. I. Zheludev, “Chalcogenide glasses in active plasmonics,” physica status solidi (RRL)–Rapid Research Letters, vol. 4, no. 10, pp. 274–276, 2010. [44] E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” science, vol. 311, no. 5758, pp. 189–193, 2006. [45] S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nature photonics, vol. 3, no. 7, pp. 388–394, 2009. [46] W. Adams, A. Ghoshroy, and D. O. Guney, “Plasmonic superlens imaging enhanced by incoherent active convolved illumination,” ACS Photonics, vol. 5, no. 4, pp. 1294–1302, 2018. [47] H. Li, L. Fu, K. Frenner, and W. Osten, “Cascaded plasmonic superlens for farfield imaging with magnification at visible wavelength,” Optics express, vol. 26, no. 8, pp. 10 888–10 897, 2018. 63 [48] M. Fehrenbacher, S. Winnerl, H. Schneider, J. Dooring, S. C. Kehr, L. M. Eng, Y. Huo, O. G. Schmidt, K. Yao, Y. Liu et al., “Plasmonic superlensing in doped GaAs,” Nano letters, vol. 15, no. 2, pp. 1057–1061, 2015. [49] K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem., vol. 58, pp. 267–297, 2007. [50] Z. Jakšic, O. Jakšic, and J. Matovic, “Performance limits to the operation of nanoplasmonic chemical sensors: noise-equivalent refractive index and detectivity,” Journal of Nanophotonics, vol. 3, no. 1, p. 031770, 2009. [51] M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chemical reviews, vol. 108, no. 2, pp. 494–521, 2008. [52] A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nature materials, vol. 8, no. 11, pp. 867–871, 2009. [53] K. Catchpole, , and A. Polman, “Plasmonic solar cells,” Optics express, vol. 16, no. 26, pp. 21 793–21 800, 2008. [54] Y. H. Jang, Y. J. Jang, S. Kim, L. N. Quan, K. Chung, and D. H. Kim, “Plasmonic solar cells: from rational design to mechanism overview,” Chemical reviews, vol. 116, no. 24, pp. 14 982–15 034, 2016. [55] K. Ueno, T. Oshikiri, Q. Sun, X. Shi, and H. Misawa, “Solid-state plasmonic solar cells,” Chemical reviews, vol. 118, no. 6, pp. 2955–2993, 2017. [56] S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Toward plasmonic solar cells: protection of silver nanoparticles via atomic layer deposition of tio2,” Langmuir, vol. 25, no. 5, pp. 2596–2600, 2009. [57] J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nature nanotechnology, vol. 2, no. 9, pp. 549–554, 2007. [58] F. Garcia-Vidal, L. Martin-Moreno, and J. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” Journal of optics A: Pure and applied optics, vol. 7, no. 2, p. S97, 2005. [59] A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science, vol. 331, no. 6015, pp. 290–291, 2011. [60] K. Yao and Y. Liu, “Plasmonic metamaterials,” Nanotechnology Reviews, vol. 3, no. 2, pp. 177–210, 2014. 64 [61] K. K. Madapu, A. K. Sivadasan, M. Baral, and S. Dhara, “Observation of surface plasmon polaritons in 2d electron gas of surface electron accumulation in inn nanostructures,” Nanotechnology, vol. 29, no. 27, p. 275707, 2018. [62] X. Zhang and J. Yang, “Ultrafast plasmonic optical switching structures and devices,” Frontiers in Physics, vol. 7, p. 190, 2019. [63] S. A. Maier, “Plasmonics: The promise of highly integrated optical devices,” IEEE Journal of selected topics in Quantum Electronics, vol. 12, no. 6, pp. 1671–1677, 2006. [64] S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Advanced materials, vol. 13, no. 19, pp. 1501–1505, 2001. [65] P. G. Kik, S. A. Maier, and H. A. Atwater, “Plasmon printing–a new approach to near-field lithography,” MRS Online Proceedings Library (OPL), vol. 705, 2001. [66] H. B. Lu, J. Homola, C. T. Campbell, G. G. Nenninger, S. S. Yee, and B. D. Ratner, “Protein contact printing for a surface plasmon resonance biosensor with on-chip referencing,” Sensors and Actuators B: Chemical, vol. 74, no. 1-3, pp. 91–99, 2001. [67] S. Natarajan, P. S. Katsamba, A. Miles, J. Eckman, G. A. Papalia, R. L. Rich, B. K. Gale, and D. G. Myszka, “Continuous-flow microfluidic printing of proteins for array-based applications including surface plasmon resonance imaging,” Analytical Biochemistry, vol. 373, no. 1, pp. 141–146, 2008. [68] Y. Jin and X. Gao, “Plasmonic fluorescent quantum dots,” Nature nanotechnology, vol. 4, no. 9, pp. 571–576, 2009. [69] O. Bitton, S. N. Gupta, and G. Haran, “Quantum dot plasmonics: from weak to strong coupling,” Nanophotonics, vol. 8, no. 4, pp. 559–575, 2019. [70] J. Ho, J. Tatebayashi, S. Sergent, C. F. Fong, Y. Ota, S. Iwamoto, and Y. Arakawa, “A nanowire-based plasmonic quantum dot laser,” Nano letters, vol. 16, no. 4, pp. 2845–2850, 2016. [71] T. A. Larson, J. Bankson, J. Aaron, and K. Sokolov, “Hybrid plasmonic magnetic nanoparticles as molecular specific agents for mri/optical imaging and photothermal therapy of cancer cells,” Nanotechnology, vol. 18, no. 32, p. 325101, 2007. [72] J. Z. Zhang, “Biomedical applications of shape-controlled plasmonic nanostructures: a case study of hollow gold nanospheres for photothermal ablation ther65 apy of cancer,” The Journal of Physical Chemistry Letters, vol. 1, no. 4, pp. 686–695, 2010. [73] Y. T. Lim, M. Y. Cho, J. K. Kim, S. Hwangbo, and B. H. Chung, “Plasmonic magnetic nanostructure for bimodal imaging and photonic-based therapy of cancer cells,” ChemBioChem, vol. 8, no. 18, pp. 2204–2209, 2007. [74] X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (pptt) using gold nanoparticles,” Lasers in medical science, vol. 23, no. 3, pp. 217–228, 2008. [75] A. N. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nature photonics, vol. 6, no. 11, pp. 749–758, 2012. [76] F. J. Garcia de Abajo, “Graphene plasmonics: challenges and opportunities,” Acs Photonics, vol. 1, no. 3, pp. 135–152, 2014. [77] P. A. D. Gonçalves and N. M. Peres, An introduction to graphene plasmonics. World Scientific, 2016. [78] A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Physical review letters, vol. 100, no. 11, p. 113901, 2008. [79] J. Renger, M. Kadic, G. Dupont, S. S. Acimovi ´ c, S. Guenneau, R. Quidant, and ´ S. Enoch, “Hidden progress: broadband plasmonic invisibility,” Optics Express, vol. 18, no. 15, pp. 15 757–15 768, 2010. [80] W. Kort-Kamp, F. Rosa, F. Pinheiro, and C. Farina, “Tuning plasmonic cloaks with an external magnetic field,” Physical review letters, vol. 111, no. 21, p. 215504, 2013. [81] J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Optics letters, vol. 22, no. 7, pp. 475–477, 1997. [82] S. A. Maier, P. E. Barclay, T. J. Johnson, M. D. Friedman, and O. Painter, “Lowloss fiber accessible plasmon waveguide for planar energy guiding and sensing,” Applied Physics Letters, vol. 84, no. 20, pp. 3990–3992, 2004. [83] S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, “Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing,” Applied Physics Letters, vol. 86, no. 7, p. 071103, 2005. [84] S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature materials, vol. 2, no. 4, pp. 229–232, 2003. 66 [85] L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Optics letters, vol. 31, no. 14, pp. 2133–2135, 2006. [86] R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” nature photonics, vol. 2, no. 8, p. 496, 2008. [87] R. Oulton, G. Bartal, D. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New Journal of Physics, vol. 10, no. 10, p. 105018, 2008. [88] H. Li, J. W. Noh, Y. Chen, and M. Li, “Enhanced optical forces in integrated hybrid plasmonic waveguides,” Optics express, vol. 21, no. 10, pp. 11 839–11 851, 2013. [89] X. Yang, Y. Liu, R. F. Oulton, X. Yin, and X. Zhang, “Optical forces in hybrid plasmonic waveguides,” nano Letters, vol. 11, no. 2, pp. 321–328, 2011. [90] J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Physical Review B, vol. 60, no. 12, p. 9061, 1999. [91] A. Sivadasan, M. Sardar, and S. Dhara, “Far field photoluminescence imaging of single algan nanowire in the sub-wavelength scale using confinement of polarized light,” Annalen der Physik, vol. 529, no. 3, p. 1600165, 2017. [92] B. Steinberger, A. Hohenau, H. Ditlbacher, A. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, and J. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Applied Physics Letters, vol. 88, no. 9, p. 094104, 2006. [93] N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction-limited optical imaging with a silver superlens,” Science, vol. 308, no. 5721, pp. 534–537, 2005. [94] J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nature communications, vol. 1, no. 1, pp. 1–5, 2010. [95] S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Physical review letters, vol. 95, no. 4, p. 046802, 2005. [96] J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, and A.-L. Baudrion, “Near-field characterization of bragg mirrors engraved in surface plasmon waveguides,” Physical Review B, vol. 70, no. 23, p. 235406, 2004. 67 [97] M. S. I. Sumon, M. Tazwar, R. H. Sagor, and S. M. Khandaker, “Design and analysis of a semi-elliptical ultra-compact nano-plasmonic coupler,” in 2019 International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST). IEEE, 2019, pp. 417–421. [98] D. Pile and D. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Applied Physics Letters, vol. 89, no. 4, p. 041111, 2006. [99] E. Wadbro and C. Engström, “Topology and shape optimization of plasmonic nano-antennas,” Computer Methods in Applied Mechanics and Engineering, vol. 293, pp. 155–169, 2015. [100] Y. Deng, Z. Liu, C. Song, J. Wu, Y. Liu, and Y. Wu, “Topology optimizationbased computational design methodology for surface plasmon polaritons,” Plasmonics, vol. 10, no. 3, pp. 569–583, 2015. [101] J. Andkjær, S. Nishiwaki, T. Nomura, and O. Sigmund, “Topology optimization of grating couplers for the efficient excitation of surface plasmons,” JOSA B, vol. 27, no. 9, pp. 1828–1832, 2010. [102] T. Weiland, “A discretization model for the solution of maxwell’s equations for six-component fields,” Archiv Elektronik und Uebertragungstechnik, vol. 31, pp. 116–120, 1977. [103] M. Clemens and T. Weiland, “Magnetic field simulation using conformal fit formulations,” IEEE transactions on magnetics, vol. 38, no. 2, pp. 389–392, 2002. [104] K. Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Transactions on antennas and propagation, vol. 14, no. 3, pp. 302–307, 1966. [105] R. Marklein, The finite integration technique as a general tool to compute acoustic, electromagnetic, elastodynamic, and coupled wave fields. IEEE Press and John Wiley and Sons, New York, NY, USA, 2002. [106] S. M. Rao, G. K. Gothard, and D. R. Wilton, “Application of finite-integral technique to electromagnetic scattering by two-dimensional cavity-backed aperture in a ground plane,” IEEE Transactions on Antennas and Propagation, vol. 46, no. 5, pp. 679–685, 1998. [107] K. Langenberg, M. Brandfaß, R. Hannemann, T. Kaczorowski, J. Kostka, C. Hofmann, R. Marklein, K. Mayer, and A. Pitsch, “Inverse scattering with acoustic, electromagnetic, and elastic waves as applied in nondesctructive evaluation,” in Wavefield inversion. Springer, 1999, pp. 59–118. 68 [108] M. Funieru, H. De Gersem, and T. Weiland, “Transient simulation of a linear actuator discretized by the finite integration technique,” in Scientific Computing in Electrical Engineering. Springer, 2007, pp. 281–286. [109] I. Munteanu and T. Weiland, “Rf & microwave simulation with the finite integration technique–from component to system design,” in Scientific Computing in Electrical Engineering. Springer, 2007, pp. 247–260. [110] S. Chew, M. Leong, and P. Kooi, “Application of the finite integration technique to the problem of whispering-gallery modes,” Electronics Letters, vol. 29, no. 10, pp. 888–890, 1993. [111] V. Motrescu and U. Rienen, “Simulation of electromagnetic ftelds in the human body using finite integration technique (fit),” 2002. [112] S. Gutschling, H. Krüger, and T. Weiland, “Time-domain simulation of dispersive media with the finite integration technique,” International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 13, no. 4, pp. 329–348, 2000. [113] C. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Applied physics letters, vol. 91, no. 6, p. 061116, 2007. [114] J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” Journal of computational physics, vol. 114, no. 2, pp. 185–200, 1994. [115] A. Al Noor, M. T. Al-Amin, R. H. Sagor, and M. G. Saber, “Guiding surface plasmon polariton along 90 degree bend mdm waveguide models,” in Advances in Electrical Engineering (ICAEE), 2013 International Conference on. IEEE, 2013, pp. 124–128. [116] M. G. Saber and R. H. Sagor, “A comparative study of dielectric materials as nano-plasmonic couplers,” in Electrical Engineering Congress (iEECON), 2014 International. IEEE, 2014, pp. 1–4. [117] Md. Ghulam Saber and Rakibul Hasan Sagor, “Analysis of cuprous oxide-based ultra-compact nanoplasmonic coupler,” Applied Nanoscience, vol. 5, no. 2, pp. 217–221, apr 2014. [Online]. Available: https: //doi.org/10.1007%2Fs13204-014-0308-3 [118] Md. Ghulam Saber and Rakibul Hasan Sagor, “Design and study of nano-plasmonic couplers using aluminium arsenide and alumina,” IET Optoelectronics, vol. 9, no. 3, pp. 125–130, jun 2015. [Online]. Available: https://doi.org/10.1049%2Fiet-opt.2014.0027 [119] A. Boltasseva, K. Leosson, T. Rosenzveig, R. B. Nielsen, R. H. Pedersen, K. B. Jørgensen, I. Fernandez-Cuesta, J. Jung, T. Søndergaard, S. I. 69 Bozhevolnyi, and A. Kristensen, “Fabrication of plasmonic waveguides for device applications,” in Photonic Metamaterials, M. A. Noginov, N. I. Zheludev, A. D. Boardman, and N. Engheta, Eds. SPIE, sep 2007. [Online]. Available: https://doi.org/10.1117%2F12.732836 en_US
dc.identifier.uri http://hdl.handle.net/123456789/1339
dc.description Supervised by Dr. Rakibul Hasan Sagor, Associate Professor, Department of Electrical and Electronics Engineering(EEE), Islamic University of Technology(IUT), Board Bazar, Gazipur-1704, Bangladesh en_US
dc.description.abstract The capability of plasmonics-based devices to avoid the diffraction limit commonly found in the sub wavelength devices has attracted the attention of researchers now a days. As a result of the demand of plasmonics-based devices the necessity of a plasmonic coupler has also increased to make these plasmonic-based devices compatible with the existing non-plasmonic devices. In this thesis, efficient coupling of light between the dielectric waveguide and plasmonic waveguide of metal-dielectricmetal (MDM) type has been investigated theoretically in three dimensions. A novel nano-plasmonic semi-elliptical structure of silicon (Si) has been used as a coupler that connects these waveguides. Finite Integration Technique (FIT) has been deployed for the investigation. A theoretical coupling efficiency of ∼78% at optical communication wavelength (1550 nm) has been achieved through numerical simulations. Later on, an air gap was inserted between the dielectric waveguide and the plasmonic waveguide which has improved the efficiency to ∼85% near 1550 nm. The dependency of coupling efficiency has been investigated by varying the curvature of the semi-elliptical coupler, the air gap width between the two waveguides, and the width of the air gap of MDM (Ag-Air-Ag) waveguide, and an optimal dimension of the proposed structure has been determined. A number of performance parameters like coupling efficiency, reflection coefficient, return loss, and voltage standing wave ratio (VSWR) have been analyzed with the obtained optimal dimensions for both of the cases. A broad range of operating frequency, tolerance to angular and air gap misalignment and excellent agreement to a demonstrated experimental coupler has made the proposed coupler distinctive en_US
dc.language.iso en en_US
dc.publisher Department of Electrical and Electronic Engineering, Islamic University of Technology (IUT) The Organization of Islamic Cooperation (OIC) Board Bazar, Gazipur-1704, Bangladesh en_US
dc.title Design and Analysis of Plasmonic Couplers with Enhanced Performance en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics