dc.identifier.citation |
[1] J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” Journal of Physics D: Applied Physics, vol. 45, no. 11, p. 113001, 2012. [2] D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature photonics, vol. 4, no. 2, pp. 83–91, 2010. [3] Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Optics express, vol. 18, no. 12, pp. 13 173–13 179, 2010. [4] Saber, Md Ghulam and Sagor, Rakibul Hasan, “Analysis of cuprous oxide-based ultra-compact nanoplasmonic coupler,” Applied Nanoscience, vol. 5, no. 2, pp. 217–221, 2015. [5] G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Optics Express, vol. 15, no. 3, pp. 1211–1221, 2007. [6] R. A. Wahsheh, Z. Lu, and M. A. Abushagur, “Nanoplasmonic couplers and splitters,” Optics Express, vol. 17, no. 21, pp. 19 033–19 040, 2009. [7] P. Ginzburg and M. Orenstein, “Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching,” Optics express, vol. 15, no. 11, pp. 6762–6767, 2007. [8] M. S. I. Sumon, M. O. Sharif, A. R. Anwar, S. S. Mahmud, and R. H. Sagor, “Theoretical investigation of a GaAs based novel air slot nano-plasmonic coupler,” in 2020 IEEE Region 10 Symposium (TENSYMP). IEEE, 2020, pp. 1123–1127. [9] R. A. Wahsheh and M. A. Abushagur, “Experimental and theoretical investigations of an air-slot coupler between dielectric and plasmonic waveguides,” Optics express, vol. 24, no. 8, pp. 8237–8242, 2016. 60 [10] Saber, Md Ghulam and Sagor, Rakibul Hasan, “Design and analysis of a gallium lanthanum sulfide based nanoplasmonic coupler yielding 67% efficiency.” [11] Saber, Md Ghulam and Sagor, Rakibul Hasan, “Design and study of nanoplasmonic couplers using aluminium arsenide and alumina,” IET Optoelectronics, vol. 9, no. 3, pp. 125–130, 2015. [12] E. D. Palik, Handbook of optical constants of solids. Academic press, 1998, vol. 3. [13] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” nature, vol. 424, no. 6950, pp. 824–830, 2003. [14] S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Physical review letters, vol. 86, no. 14, p. 3008, 2001. [15] J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors,” Sensors and actuators B: Chemical, vol. 54, no. 1-2, pp. 3–15, 1999. [16] G. Raschke, S. Brogl, A. Susha, A. Rogach, T. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl et al., “Gold nanoshells improve single nanoparticle molecular sensors,” Nano letters, vol. 4, no. 10, pp. 1853–1857, 2004. [17] J. Homola, “Present and future of surface plasmon resonance biosensors,” Analytical and bioanalytical chemistry, vol. 377, no. 3, pp. 528–539, 2003. [18] D. G. Georganopoulou, L. Chang, J.-M. Nam, C. S. Thaxton, E. J. Mufson, W. L. Klein, and C. A. Mirkin, “Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for alzheimer’s disease,” Proceedings of the National Academy of Sciences, vol. 102, no. 7, pp. 2273–2276, 2005. [19] K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (sers),” Physical review letters, vol. 78, no. 9, p. 1667, 1997. [20] A. M. Michaels, M. Nirmal, and L. Brus, “Surface enhanced raman spectroscopy of individual rhodamine 6g molecules on large ag nanocrystals,” Journal of the American Chemical Society, vol. 121, no. 43, pp. 9932–9939, 1999. [21] Y. Fang, H. Wei, F. Hao, P. Nordlander, and H. Xu, “Remote-excitation surfaceenhanced raman scattering using propagating ag nanowire plasmons,” Nano letters, vol. 9, no. 5, pp. 2049–2053, 2009. [22] P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” nature, vol. 459, no. 7245, pp. 410–413, 2009. 61 [23] C. Hermann, V. Kosobukin, G. Lampel, J. Peretti, V. Safarov, and P. Bertrand, “Surface-enhanced magneto-optics in metallic multilayer films,” Physical Review B, vol. 64, no. 23, p. 235422, 2001. [24] M. Westphalen, U. Kreibig, J. Rostalski, H. Lüth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Solar energy materials and solar cells, vol. 61, no. 1, pp. 97–105, 2000. [25] V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano letters, vol. 8, no. 12, pp. 4391–4397, 2008. [26] H. J. Lezec, A. Degiron, E. Devaux, R. Linke, L. Martin-Moreno, F. GarciaVidal, and T. Ebbesen, “Beaming light from a subwavelength aperture,” science, vol. 297, no. 5582, pp. 820–822, 2002. [27] G. Lerosey, D. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano letters, vol. 9, no. 1, pp. 327–331, 2009. [28] S. Maier, P. Kik, and H. Atwater, “a, meltzer, s., harel, e., koel, be, requicha, aag,” Nat. Mater, vol. 2, pp. 229–232, 2003. [29] R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” nature photonics, vol. 2, no. 8, p. 496, 2008. [30] Z. Han, A. Elezzabi, and V. Van, “Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform,” Optics letters, vol. 35, no. 4, pp. 502–504, 2010. [31] R. A. Wahsheh, Z. Lu, and M. A. Abushagur, “Experimental investigation of a nanoplasmonic air-slot coupler toward dense optical integrated circuits,” in Frontiers in Optics. Optical Society of America, 2015, pp. FW3E–2. [32] R. Yang, R. A. Wahsheh, Z. Lu, and M. A. Abushagur, “Efficient light coupling between dielectric slot waveguide and plasmonic slot waveguide,” Optics letters, vol. 35, no. 5, pp. 649–651, 2010. [33] B. Q. Zhu and H. K. Tsang, “High coupling efficiency silicon waveguide to metal–insulator–metal waveguide mode converter,” Journal of Lightwave Technology, vol. 34, no. 10, pp. 2467–2472, 2016. [34] B. Lau, M. A. Swillam, and A. S. Helmy, “Hybrid orthogonal junctions: wideband plasmonic slot-silicon waveguide couplers,” Optics express, vol. 18, no. 26, pp. 27 048–27 059, 2010. 62 [35] R. A. Wahsheh, Z. Lu, and M. A. Abushagur, “Nanoplasmonic air-slot coupler: design and fabrication,” in Frontiers in optics. Optical Society of America, 2012, pp. FTh4A–6. [36] R. Thomas, Z. Ikonic, and R. Kelsall, “Silicon based plasmonic coupler,” Optics express, vol. 20, no. 19, pp. 21 520–21 531, 2012. [37] M. T. Noghani and M. H. V. Samiei, “Ultrashort hybrid metal–insulator plasmonic directional coupler,” Applied optics, vol. 52, no. 31, pp. 7498–7503, 2013. [38] R. A. Wahsheh, Z. Lu, and M. A. Abushagur, “Ultra-compact integrated nanoplasmonic air-gap coupler,” in Frontiers in Optics. Optical Society of America, 2014, pp. FTh4E–5. [39] D. Kong and M. Tsubokawa, “Evaluation of slot-to-slot coupling between dielectric slot waveguides and metal-insulator-metal slot waveguides,” Optics express, vol. 23, no. 15, pp. 19 082–19 091, 2015. [40] M. B. Heydari, M. Asgari, and N. Jafari, “Novel analytical model for nanocoupler between metal–insulator–metal plasmonic and dielectric slab waveguides,” Optical and Quantum Electronics, vol. 50, no. 12, pp. 1–11, 2018. [41] S. H. Badri and M. Gilarlue, “Coupling between silicon waveguide and metaldielectric-metal plasmonic waveguide with lens-funnel structure,” Plasmonics, pp. 1–7, 2019. [42] A. D. Rakic, A. B. Djuriši ´ c, J. M. Elazar, and M. L. Majewski, “Optical proper- ´ ties of metallic films for vertical-cavity optoelectronic devices,” Applied optics, vol. 37, no. 22, pp. 5271–5283, 1998. [43] Z. L. Sámson, S.-C. Yen, K. F. MacDonald, K. Knight, S. Li, D. W. Hewak, D.-P. Tsai, and N. I. Zheludev, “Chalcogenide glasses in active plasmonics,” physica status solidi (RRL)–Rapid Research Letters, vol. 4, no. 10, pp. 274–276, 2010. [44] E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” science, vol. 311, no. 5758, pp. 189–193, 2006. [45] S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nature photonics, vol. 3, no. 7, pp. 388–394, 2009. [46] W. Adams, A. Ghoshroy, and D. O. Guney, “Plasmonic superlens imaging enhanced by incoherent active convolved illumination,” ACS Photonics, vol. 5, no. 4, pp. 1294–1302, 2018. [47] H. Li, L. Fu, K. Frenner, and W. Osten, “Cascaded plasmonic superlens for farfield imaging with magnification at visible wavelength,” Optics express, vol. 26, no. 8, pp. 10 888–10 897, 2018. 63 [48] M. Fehrenbacher, S. Winnerl, H. Schneider, J. Dooring, S. C. Kehr, L. M. Eng, Y. Huo, O. G. Schmidt, K. Yao, Y. Liu et al., “Plasmonic superlensing in doped GaAs,” Nano letters, vol. 15, no. 2, pp. 1057–1061, 2015. [49] K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem., vol. 58, pp. 267–297, 2007. [50] Z. Jakšic, O. Jakšic, and J. Matovic, “Performance limits to the operation of nanoplasmonic chemical sensors: noise-equivalent refractive index and detectivity,” Journal of Nanophotonics, vol. 3, no. 1, p. 031770, 2009. [51] M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chemical reviews, vol. 108, no. 2, pp. 494–521, 2008. [52] A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nature materials, vol. 8, no. 11, pp. 867–871, 2009. [53] K. Catchpole, , and A. Polman, “Plasmonic solar cells,” Optics express, vol. 16, no. 26, pp. 21 793–21 800, 2008. [54] Y. H. Jang, Y. J. Jang, S. Kim, L. N. Quan, K. Chung, and D. H. Kim, “Plasmonic solar cells: from rational design to mechanism overview,” Chemical reviews, vol. 116, no. 24, pp. 14 982–15 034, 2016. [55] K. Ueno, T. Oshikiri, Q. Sun, X. Shi, and H. Misawa, “Solid-state plasmonic solar cells,” Chemical reviews, vol. 118, no. 6, pp. 2955–2993, 2017. [56] S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Toward plasmonic solar cells: protection of silver nanoparticles via atomic layer deposition of tio2,” Langmuir, vol. 25, no. 5, pp. 2596–2600, 2009. [57] J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nature nanotechnology, vol. 2, no. 9, pp. 549–554, 2007. [58] F. Garcia-Vidal, L. Martin-Moreno, and J. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” Journal of optics A: Pure and applied optics, vol. 7, no. 2, p. S97, 2005. [59] A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science, vol. 331, no. 6015, pp. 290–291, 2011. [60] K. Yao and Y. Liu, “Plasmonic metamaterials,” Nanotechnology Reviews, vol. 3, no. 2, pp. 177–210, 2014. 64 [61] K. K. Madapu, A. K. Sivadasan, M. Baral, and S. Dhara, “Observation of surface plasmon polaritons in 2d electron gas of surface electron accumulation in inn nanostructures,” Nanotechnology, vol. 29, no. 27, p. 275707, 2018. [62] X. Zhang and J. Yang, “Ultrafast plasmonic optical switching structures and devices,” Frontiers in Physics, vol. 7, p. 190, 2019. [63] S. A. Maier, “Plasmonics: The promise of highly integrated optical devices,” IEEE Journal of selected topics in Quantum Electronics, vol. 12, no. 6, pp. 1671–1677, 2006. [64] S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Advanced materials, vol. 13, no. 19, pp. 1501–1505, 2001. [65] P. G. Kik, S. A. Maier, and H. A. Atwater, “Plasmon printing–a new approach to near-field lithography,” MRS Online Proceedings Library (OPL), vol. 705, 2001. [66] H. B. Lu, J. Homola, C. T. Campbell, G. G. Nenninger, S. S. Yee, and B. D. Ratner, “Protein contact printing for a surface plasmon resonance biosensor with on-chip referencing,” Sensors and Actuators B: Chemical, vol. 74, no. 1-3, pp. 91–99, 2001. [67] S. Natarajan, P. S. Katsamba, A. Miles, J. Eckman, G. A. Papalia, R. L. Rich, B. K. Gale, and D. G. Myszka, “Continuous-flow microfluidic printing of proteins for array-based applications including surface plasmon resonance imaging,” Analytical Biochemistry, vol. 373, no. 1, pp. 141–146, 2008. [68] Y. Jin and X. Gao, “Plasmonic fluorescent quantum dots,” Nature nanotechnology, vol. 4, no. 9, pp. 571–576, 2009. [69] O. Bitton, S. N. Gupta, and G. Haran, “Quantum dot plasmonics: from weak to strong coupling,” Nanophotonics, vol. 8, no. 4, pp. 559–575, 2019. [70] J. Ho, J. Tatebayashi, S. Sergent, C. F. Fong, Y. Ota, S. Iwamoto, and Y. Arakawa, “A nanowire-based plasmonic quantum dot laser,” Nano letters, vol. 16, no. 4, pp. 2845–2850, 2016. [71] T. A. Larson, J. Bankson, J. Aaron, and K. Sokolov, “Hybrid plasmonic magnetic nanoparticles as molecular specific agents for mri/optical imaging and photothermal therapy of cancer cells,” Nanotechnology, vol. 18, no. 32, p. 325101, 2007. [72] J. Z. Zhang, “Biomedical applications of shape-controlled plasmonic nanostructures: a case study of hollow gold nanospheres for photothermal ablation ther65 apy of cancer,” The Journal of Physical Chemistry Letters, vol. 1, no. 4, pp. 686–695, 2010. [73] Y. T. Lim, M. Y. Cho, J. K. Kim, S. Hwangbo, and B. H. Chung, “Plasmonic magnetic nanostructure for bimodal imaging and photonic-based therapy of cancer cells,” ChemBioChem, vol. 8, no. 18, pp. 2204–2209, 2007. [74] X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (pptt) using gold nanoparticles,” Lasers in medical science, vol. 23, no. 3, pp. 217–228, 2008. [75] A. N. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nature photonics, vol. 6, no. 11, pp. 749–758, 2012. [76] F. J. Garcia de Abajo, “Graphene plasmonics: challenges and opportunities,” Acs Photonics, vol. 1, no. 3, pp. 135–152, 2014. [77] P. A. D. Gonçalves and N. M. Peres, An introduction to graphene plasmonics. World Scientific, 2016. [78] A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Physical review letters, vol. 100, no. 11, p. 113901, 2008. [79] J. Renger, M. Kadic, G. Dupont, S. S. Acimovi ´ c, S. Guenneau, R. Quidant, and ´ S. Enoch, “Hidden progress: broadband plasmonic invisibility,” Optics Express, vol. 18, no. 15, pp. 15 757–15 768, 2010. [80] W. Kort-Kamp, F. Rosa, F. Pinheiro, and C. Farina, “Tuning plasmonic cloaks with an external magnetic field,” Physical review letters, vol. 111, no. 21, p. 215504, 2013. [81] J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Optics letters, vol. 22, no. 7, pp. 475–477, 1997. [82] S. A. Maier, P. E. Barclay, T. J. Johnson, M. D. Friedman, and O. Painter, “Lowloss fiber accessible plasmon waveguide for planar energy guiding and sensing,” Applied Physics Letters, vol. 84, no. 20, pp. 3990–3992, 2004. [83] S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, “Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing,” Applied Physics Letters, vol. 86, no. 7, p. 071103, 2005. [84] S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature materials, vol. 2, no. 4, pp. 229–232, 2003. 66 [85] L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Optics letters, vol. 31, no. 14, pp. 2133–2135, 2006. [86] R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” nature photonics, vol. 2, no. 8, p. 496, 2008. [87] R. Oulton, G. Bartal, D. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New Journal of Physics, vol. 10, no. 10, p. 105018, 2008. [88] H. Li, J. W. Noh, Y. Chen, and M. Li, “Enhanced optical forces in integrated hybrid plasmonic waveguides,” Optics express, vol. 21, no. 10, pp. 11 839–11 851, 2013. [89] X. Yang, Y. Liu, R. F. Oulton, X. Yin, and X. Zhang, “Optical forces in hybrid plasmonic waveguides,” nano Letters, vol. 11, no. 2, pp. 321–328, 2011. [90] J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Physical Review B, vol. 60, no. 12, p. 9061, 1999. [91] A. Sivadasan, M. Sardar, and S. Dhara, “Far field photoluminescence imaging of single algan nanowire in the sub-wavelength scale using confinement of polarized light,” Annalen der Physik, vol. 529, no. 3, p. 1600165, 2017. [92] B. Steinberger, A. Hohenau, H. Ditlbacher, A. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, and J. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Applied Physics Letters, vol. 88, no. 9, p. 094104, 2006. [93] N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction-limited optical imaging with a silver superlens,” Science, vol. 308, no. 5721, pp. 534–537, 2005. [94] J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nature communications, vol. 1, no. 1, pp. 1–5, 2010. [95] S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Physical review letters, vol. 95, no. 4, p. 046802, 2005. [96] J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, and A.-L. Baudrion, “Near-field characterization of bragg mirrors engraved in surface plasmon waveguides,” Physical Review B, vol. 70, no. 23, p. 235406, 2004. 67 [97] M. S. I. Sumon, M. Tazwar, R. H. Sagor, and S. M. Khandaker, “Design and analysis of a semi-elliptical ultra-compact nano-plasmonic coupler,” in 2019 International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST). IEEE, 2019, pp. 417–421. [98] D. Pile and D. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Applied Physics Letters, vol. 89, no. 4, p. 041111, 2006. [99] E. Wadbro and C. Engström, “Topology and shape optimization of plasmonic nano-antennas,” Computer Methods in Applied Mechanics and Engineering, vol. 293, pp. 155–169, 2015. [100] Y. Deng, Z. Liu, C. Song, J. Wu, Y. Liu, and Y. Wu, “Topology optimizationbased computational design methodology for surface plasmon polaritons,” Plasmonics, vol. 10, no. 3, pp. 569–583, 2015. [101] J. Andkjær, S. Nishiwaki, T. Nomura, and O. Sigmund, “Topology optimization of grating couplers for the efficient excitation of surface plasmons,” JOSA B, vol. 27, no. 9, pp. 1828–1832, 2010. [102] T. Weiland, “A discretization model for the solution of maxwell’s equations for six-component fields,” Archiv Elektronik und Uebertragungstechnik, vol. 31, pp. 116–120, 1977. [103] M. Clemens and T. Weiland, “Magnetic field simulation using conformal fit formulations,” IEEE transactions on magnetics, vol. 38, no. 2, pp. 389–392, 2002. [104] K. Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Transactions on antennas and propagation, vol. 14, no. 3, pp. 302–307, 1966. [105] R. Marklein, The finite integration technique as a general tool to compute acoustic, electromagnetic, elastodynamic, and coupled wave fields. IEEE Press and John Wiley and Sons, New York, NY, USA, 2002. [106] S. M. Rao, G. K. Gothard, and D. R. Wilton, “Application of finite-integral technique to electromagnetic scattering by two-dimensional cavity-backed aperture in a ground plane,” IEEE Transactions on Antennas and Propagation, vol. 46, no. 5, pp. 679–685, 1998. [107] K. Langenberg, M. Brandfaß, R. Hannemann, T. Kaczorowski, J. Kostka, C. Hofmann, R. Marklein, K. Mayer, and A. Pitsch, “Inverse scattering with acoustic, electromagnetic, and elastic waves as applied in nondesctructive evaluation,” in Wavefield inversion. Springer, 1999, pp. 59–118. 68 [108] M. Funieru, H. De Gersem, and T. Weiland, “Transient simulation of a linear actuator discretized by the finite integration technique,” in Scientific Computing in Electrical Engineering. Springer, 2007, pp. 281–286. [109] I. Munteanu and T. Weiland, “Rf & microwave simulation with the finite integration technique–from component to system design,” in Scientific Computing in Electrical Engineering. Springer, 2007, pp. 247–260. [110] S. Chew, M. Leong, and P. Kooi, “Application of the finite integration technique to the problem of whispering-gallery modes,” Electronics Letters, vol. 29, no. 10, pp. 888–890, 1993. [111] V. Motrescu and U. Rienen, “Simulation of electromagnetic ftelds in the human body using finite integration technique (fit),” 2002. [112] S. Gutschling, H. Krüger, and T. Weiland, “Time-domain simulation of dispersive media with the finite integration technique,” International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 13, no. 4, pp. 329–348, 2000. [113] C. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Applied physics letters, vol. 91, no. 6, p. 061116, 2007. [114] J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” Journal of computational physics, vol. 114, no. 2, pp. 185–200, 1994. [115] A. Al Noor, M. T. Al-Amin, R. H. Sagor, and M. G. Saber, “Guiding surface plasmon polariton along 90 degree bend mdm waveguide models,” in Advances in Electrical Engineering (ICAEE), 2013 International Conference on. IEEE, 2013, pp. 124–128. [116] M. G. Saber and R. H. Sagor, “A comparative study of dielectric materials as nano-plasmonic couplers,” in Electrical Engineering Congress (iEECON), 2014 International. IEEE, 2014, pp. 1–4. [117] Md. Ghulam Saber and Rakibul Hasan Sagor, “Analysis of cuprous oxide-based ultra-compact nanoplasmonic coupler,” Applied Nanoscience, vol. 5, no. 2, pp. 217–221, apr 2014. [Online]. Available: https: //doi.org/10.1007%2Fs13204-014-0308-3 [118] Md. Ghulam Saber and Rakibul Hasan Sagor, “Design and study of nano-plasmonic couplers using aluminium arsenide and alumina,” IET Optoelectronics, vol. 9, no. 3, pp. 125–130, jun 2015. [Online]. Available: https://doi.org/10.1049%2Fiet-opt.2014.0027 [119] A. Boltasseva, K. Leosson, T. Rosenzveig, R. B. Nielsen, R. H. Pedersen, K. B. Jørgensen, I. Fernandez-Cuesta, J. Jung, T. Søndergaard, S. I. 69 Bozhevolnyi, and A. Kristensen, “Fabrication of plasmonic waveguides for device applications,” in Photonic Metamaterials, M. A. Noginov, N. I. Zheludev, A. D. Boardman, and N. Engheta, Eds. SPIE, sep 2007. [Online]. Available: https://doi.org/10.1117%2F12.732836 |
en_US |