dc.identifier.citation |
1. M. Satyanarayanan, “Fundamental challenges in mobile computing,” in Proc. 15th ACM Symp. on Principles of Distrib. Comp., 1996, pp. 1–7 2. H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile cloud computing: architecture, applications, and approaches,” Wireless Comm. and Mobile Comp., vol. 13, no. 18, pp. 1587–1611, 2013. 3. F. Liu, P. Shu, H. Jin, L. Ding, J. Yu, D. Niu, and B. Li, “Gearing resource-poor mobile devices with powerful clouds: architectures, challenges, and applications,” IEEE Wireless Communications, vol. 20, no. 3, pp. 14–22, 2013 4. M. T. Beck, M. Werner, S. Feld, and S. Schimper, “Mobile edge computing: A taxonomy,” in Proc. 6th International Conference on Advances in Future Internet, 2014, pp. 48 – 54 5. B. Liang, “Mobile edge computing,” Key Technologies for 5G Wireless Systems, p. 76, 2017.] [S. Davy, J. Famaey, J. Serrat-Fernandez, J. L. Gorricho, A. Miron, M. Dramitinos, P. M. Neves, S. Latre, and E. Goshen, “Challenges ´ to support edge-as-a-service,” IEEE Communications Magazine, vol. 52, no. 1, pp. 132–139, 2014 6. Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “Mobile edge computing: Survey and research outlook,” arXiv preprint arXiv, vol. 1701, 2017 7. F. Cicirelli, A. Guerrieri, A. Mercuri, G. Spezzano, and A. Vinci, “Itema: A methodological approach for cognitive edge computing iot ecosystems,” Future Generation Computer Systems, vol. 92, pp. 189–197, 2019 20 8. Y. Liu, C. Yang, L. Jiang, S. Xie, and Y. Zhang, “Intelligent edge computing for iot-based energy management in smart cities,” IEEE Network, vol. 33, no. 2, pp. 111–117, 2019. 9. A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a cloud: research problems in data center networks,” ACM SIGCOMM Computer Comm. Rev., vol. 39, no. 1, pp. 68–73, 2008 10. Energy-Aware Application Placement in Mobile Edge Computing: A Stochastic Optimization Approach 11. M. Chowdhury, M. R. Rahman, and R. Boutaba, “Vineyard: Virtual network embedding algorithms with coordinated node and link mapping,” IEEE/ACM Transactions on Networking, vol. 20, no. 1, pp. 206–219, 2012. 12. D. Dutta, M. Kapralov, I. Post, and R. Shinde, “Embedding paths into trees: Vm placement to minimize congestion,” in European Symposium on Algorithms. Springer, 2012, pp. 431–442 13. T. Bahreini and D. Grosu, “Efficient placement of multi-component applications in edge computing systems,” in Proc. of the Second ACM/IEEE Symposium on Edge Computing, 2017, pp. 5:1–5:11 14. S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, and K. K. Leung, “Dynamic service placement for mobile micro-clouds with predicted future costs,” IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 4, pp. 1002–1016, 2017. 15. S. Wang, M. Zafer, and K. K. Leung, “Online placement of multicomponent applications in edge computing environments,” IEEE Access, vol. 5, pp. 2514–2533, 2017 21 16. A. Al-Shuwaili and O. Simeone, “Energy-efficient resource allocation for mobile edge computing-based augmented reality applications,” IEEE Wireless Comm. Letters, vol. 6, no. 3, pp. 398–401, 2017 17. C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient resource allocation for mobile-edge computation offloading,” IEEE Trans. Wireless Comm., vol. 16, no. 3, pp. 1397–1411, 2017 18. J. Guo, Z. Song, Y. Cui, Z. Liu, and Y. Ji, “Energy-efficient resource allocation for multiuser mobile edge computing,” in IEEE Global Communications Conference, 2017, pp. 1–7 19. J. Zhang, X. Hu, Z. Ning, E. C.-H. Ngai, L. Zhou, J. Wei, J. Cheng, and B. Hu, “Energylatency tradeoff for energy-aware offloading in mobile edge computing networks,” IEEE Internet of Things Journal, vol. 5, no. 4, pp. 2633–2645, 2018 20. S. Wang, Y. Zhao, L. Huang, J. Xu, and C.-H. Hsu, “Qos prediction for service recommendations in mobile edge computing,” Journal of Parallel and Distributed Computing, vol. 127, pp. 134–144, 2019 21. A. H. Sodhro, Z. Luo, A. K. Sangaiah, and S. W. Baik, “Mobile edge computing based qos optimization in medical healthcare applications,” Intl. J. of Information Management, vol. 45, no. 1, pp. 308–318, 2019 22. B. Gao, Z. Zhou, F. Liu, and F. Xu, “Winning at the starting line: Joint network selection and service placement for mobile edge computing,” in Proc. IEEE INFOCOM, 2019, pp. 1459–1467 22 23. Y. Sun, S. Zhou, and J. Xu, “Emm: Energy-aware mobility management for mobile edge computing in ultra dense networks,” IEEE J. on Selected Areas in Comm., vol. 35, no. 11, pp. 2637–2646, 2017 24. S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K. K. Leung, “Dynamic service migration in mobile edge-clouds,” in IFIP Networking Conference, 2015, pp. 1–9 25. R. Urgaonkar, S. Wang, T. He, M. Zafer, K. Chan, and K. K. Leung, “Dynamic service migration and workload scheduling in edgeclouds,” Performance Evaluation, vol. 91, pp. 205 – 228, 2015 26. C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of markov decision processes,” Mathematics of Operations Research, vol. 12, no. 3, pp. 441–450, 1987 27. H. Badri, T. Bahreini, D. Grosu, and K. Yang, “A sample average approximation-based parallel algorithm for application placement in edge computing systems,” in Proc. of IEEE International Conference on Cloud Engineering, 2018, pp. 198–203 28. H. Badri, T. Bahreini, D. Grosu, and K. Yang, “A sample average approximation-based parallel algorithm for application placement in edge computing systems,” in Proc. of IEEE International Conference on Cloud Engineering, 2018, pp. 198–203 |
en_US |