dc.identifier.citation |
[1] S. Park and R. S. Ruoff,Nat. Nanotechnol., 2009, 4, 217–224. [2] A. K. Geim and K.S. Novoselov, "The rise of graphene," Nature Materials, vol. 6, no. 183,2007. [3] A.K. Geim, "Graphene: Status and Prospects," Science, vol.324,no.5934, p.1530,June,2009. [4] Yuanbo Zhang et al, "Experimentla Observation of the quantum Hall effect and Berry's phase in graphene," Nature, vol. 438,pp.201-204,September 2005. [5] M Scarselli et al, "Electronic and Optoelectronic nano-devices based on carbon nanotubes," Journal of Physics: Condensed Matter, vol.24, no. 31, 2012. [6] L.G. Wade, Organic Chemistry (5th Edition): Prentice Hall,.2002 [7] A.H.Castro Netoetal, "The electronic properties of graphene," Rev.Mod.Phys,vol. 81, no. 109, Jan. .2009 [8] Peres N M R 2010 Colloquium: the transport properties of graphene: an introduction Rev. Mod. Phys. 82 2673–700. [9] Peres N M R, Guinea F and Castro Neto A H 2006 Electronic properties of disordered two-dimensional carbon Phys. Rev. B 73 125411 [10] Mak K F, Sfeir M Y, Wu Y, Lui C H, Misewich J A and Heinz T F 2008 Measurement of the optical conductivity of graphene Phys. Rev. Lett. 101 196405 [11] Geim A K, Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T and Peres N M R 2008 Fine structure constant defines visual transparency of graphene Science 320 1308 [12] Winnerl S et al 2011 Carrier relaxation in epitaxial graphene photoexcited near the Dirac point Phys. Rev. Lett. 107 237401 [13] Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim,H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nature Phys., vol. 4, no. 7, pp. 532–535, 2008. [14] F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. Ron Shen, “Gate-variable optical transitions in graphene,” Science, vol. 320, no. 5873, pp. 206–209, 2008. [15] B. Sensale-Rodriguez, R. Yan, L. Liu, D. Jena, and H. G. Xing, “Graphene for reconfigurable terahertz optoelectronics,”Proc. IEEE, vol. 101, no. 7, pp. 1705–1716, Jul. 2013. [16] K. Yang, S. Arezoomandan, and B. Sensale-Rodriguez, “The linear and nonlinear THz properties of graphene,” Terahertz Sci. Technol., vol. 6, no. 4, pp. 223–233, 2013. [17] F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene pho- tonics and optoelectronics,” Nature Photon., vol. 4, no. 9, pp. 611–622, 2010. 44 [18] Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano, vol. 6, no. 5, pp. 3677–3694, 2012. [19] A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater 6 ) 2007 ( 183 - 191 . [20] K. Kim, J.Y. Choi, T. Kim, S.H. Cho, H.J. Chung, A role for graphene in siliconbased semiconductor devices, Nature .344-338 (2011) 479 [21] Gierz I, Riedl C, Starke U, Ast C R and Kern K 2008 Atomic hole doping of grapheneNano Lett.84603–7 [22] Coletti C, Riedl C, Lee D S, Krauss B, Patthey L,von Klitzing K, Smet J H and Starke U 2010 Charge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping Phys. Rev.B81235401 [23] Li X, Wang X, Zhang L, Lee S and Dai H 2008 Chemically derived, ultrasmooth graphene nanoribbon semiconductors Science3191229–32 [24] Elias E C et al. Control of graphene’s properties by reversible hydrogenation: evidence for graphene Science 323610,–3,2009 [25] Jaiswal M, Lim C H Y X, Bao Q, Toh C T, Loh K P and Özyilmaz B, Controlled hydrogenation of grapheme sheets and nanoribbonsACS Nano5888–96,2011 [26] Wang F, Liu G, Rothwell S, Nevius M, Tejeda A,Taleb Ibrahimi A, Feldman L C, Cohen P I and Conrad E H Wide-gap semiconducting graphene from nitrogenseeded SiC Nano Lett.134827–32,2013 [27] Takahashi T, Sugawara S, Noguchi E, Sato T and Takahashi T Band-gap tuning of monolayer graphene by oxygena dsorption Carbon73141–5,2014 [28] Balog R et al Bandgap opening in graphene induced by patterned hydrogen adsorptionNat. Mater.9315–9,2010 [29] Berashevich J and Chakraborty T Tunable band gap and magnetic ordering by adsorption of molecules on grapheme Phys. Rev.B 80033404,,2009 [30] E. J. Duplock, M. Scheffler and P. J. D. Lindan,Phys. Rev.Lett., 92, 225502,2004 [31] Y. W. Son, M. L. Cohen and S. G. Louie,Phys. Rev. Lett., 97, 216803,2006 [32] X. Liang, Z. Fu and S. Y. Chou,Nano Lett., 7, 3840,2007, [33] Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill and P. Avouris,Science, 327, 2010 ,662 [34] F. Xia, D. B. Farmer, Y.-M. Lin and P. Avouris,Nano Lett., 10, 715,2010 [35] sung et al.(2 ta jabe) [36] A. J. Gr¨ uneis,J. Phys.: Condens. Matter, 25, 043001,2013 [37] Y. Zhang, T. Tang, C. Girit, Z. Hao, M. Martin, A. Zettle, M. F. Crommie, Y. Shen and F. Wang,Nature, 459, 820,2009 [38] S. J. Sung, P. R. Lee, J. G. Kim, M. T. Ryu, H. M. Park and J. W. Chung, Appl. Phys. Lett., 105, 081605,2014 [39] N. Li, G. Lee, J. W. Yang, H. Kim, M. S. Yeom, [40] R. H. Scheicher, J.-S. Kim and K.-S. Kim,J. Phys. Chem. C,117 , 4309,2013 [41] S. J. Sung, P. R. Lee, J. G. Kim, M. T. Ryu, H. M. Park, and J. W. Chung, Band gap engineering for graphene by using Na+ions, APPLIED PHYSICS LETTERS105, 081605,(2014) [42] Sung etal.Band modification of graphene by using slow Cs+ ions, RSC Adv.,2016,6,9106,(2015) 45 [43] D. Usachov, O. Vilkov, A. Grüneis, D. Haberer, A. Fedorov, V.K. Adamchuk, et al., Nitrogen-doped graphene: efficient growth, structure and electronic properties, Nano Lett. 11 5401 - 5407 , 2011 [44] K. Watanabe, T. Taniguchi, H. Kanda, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal, Nat. Mater -404 3 (2004),409 [45] M. Kan, J. Zhou, Q. Wang, Q. Sun, P. Jena, Tuning the band gap and magnetic properties of BN sheets impregnated with grapheneflakes, Phys. Rev. B ,(2011)84 .205412 [46] P.P. Shinde, V. Kumar, Direct band gap opening in graphene by BN doping:Ab initio calculations, Phys. Rev. B .125401 (2011) 84 [47] X. Fan, Z. Shen, A.Q. Liu, J.L. Kuo, Bandgap opening of graphene by doping small boron nitride domains, Nanoscale 2165-2157 (2012) [48] L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, et al., Atomic layers of hybridized boron nitride and graphene domains, Nat. Mater .435-430 (2010) [49] C.K. Chang, S. Kataria, C.C. Kuo, A. Ganguly, B.Y. Wang, J.Y. Hwang, et al., Bandgap engineering of chemical vapor deposited graphene byin-situ BN doping, ACS Nano .1341-1333 (2013) [50] G.C. Loh, R. Pandey, A grapheme boron nitride lateral heterostructure, J. Mater. Chem. C .5918 ,(2015) [51] P. Nath, S. Chowdhury, D. Sanyal, D. Jana, Ab-initio calculation of electronic and optical properties of nitrogen and boron doped graphene nanosheet, Carbon 73 .282-275 ,(2014) [52] R. Nascimento, J. da R. Martins, R.J.C. Batista, H. Chacham, Band gaps of BNdoped graphene fluctuations, trends, and bounds, J. Phys. Chem. C ,(2015)119 .5061-5055 [53] L. Ferrighi, M.I. Trioni, C.D. Valentin, Boron-doped, nitrogen-doped and codoped graphene on Cu( :(111a DFT-VdW study, J. Phys. Chem. C 119 6064-6056,(2015) [54] P. Rani, V.K. Jindal, Designing band gap of graphene by B and N dopant, RSC Adv. 3 (2013) 802. [55] Z.M. Liu, Y. Zhu, Z.Q. Yang, Half metallicity and electronic structures in armchair BCN-hybrid nanoribbons, J. Chem. Phys. 134 (2011) 074708 [56] Xiong Cao et al. Band Gap Opening of Graphene by Forming Heterojunctions with the 2D Carbonitrides Nitrogenated Holey Graphene, g‑C3N4, and g‑CN: Electric Field Effect,journal of Physical chemistry c,(2016) [57] Balu, R.; Zhong, X.; Pandey, R.; Karna, S. P. Effect of Electric Field on the Band Structure of Graphene/Boron Nitride and Boron Nitride/Boron Nitride Bilayers.Appl. Phys. Lett.2012, 100, .052104 [58] Zhong, X.; Yap, Y. K.; Pandey, R.; Karna, S. P. First-Principles Study of Strain-Induced Modulation of Energy Gaps of Graphene/BN and BN Bilayers.Phys. Rev. B: Condens. Matter Mater. Phys.2011, 83, .193403 [59] Du, A.; Sanvito, S.; Li, Z.; Wang, D.; Jiao, Y.; Liao, T.; Sun, Q.;Ng, Y. H.; Zhu, Z.; Amal, R.; et al. Hybrid Graphene and Graphitic Carbon Nitride Nanocomposite: 46 Gap Opening, Electron-Hole Puddle,Interfacial Charge Transfer, and Enhanced Visible Light Response. J.Am. Chem. Soc.2012, 134, 4393 − 4397 . [60] Li, X.; Dai, Y.; Ma, Y.; Han, S.; Huang, B. Graphene/g-C3N 4Bilayer: Considerable Band Gap Opening and Effective Band Structure Engineering.Phys. Chem. Chem. Phys.2014, 16, 4235−4230 [61] Mahmood, J.; Lee, E. K.; Jung, M.; Shin, D.; Jeon, I. Y.; Jung, S.M.; Choi, H. J.; Seo, J. M.; Bae, S. Y.; Sohn, S. D.; et al. Nitrogenated Holey Two-Dimensional Structures.Nat. Commun.2015, 6, .6486 [62] Mintae Ryu, Paengro Lee, Jingul Kim, Heemin Park and Jinwook Chung , Band gap engineering for single-layer graphene by using slow Li+ions Nanotechnology27(2016) 31LT03(7pp),(2016) [63] Eizenberg, M., Blakely, J.M.: Carbon monolayer phase con- densation on Ni(111). Surf. Sci. 82(1–2), 228–236 (1979). doi:10.1016/0039-6028(79)90330-3 [64] Eizenberg, M., Blakely, J.M.: Carbon interaction with nickel surfaces: monolayer formation and structural stability. J Chem Phys 71(8), 3467 (1979). doi:10.1063/1.438736 [65] Lang, B.: A LEED study of the deposition of carbon on platinum crystal surfaces. Surface Science 53(1), 317–329 (1975). doi:10. 1016/0039-6028(75)90132-6 [66] Lu, X.K., Yu, M.F., Huang, H., Ruoff, R.S.: Tailoring graphite with the goal of achieving single sheets. Nanotechnology 10(3), 269–272 (1999). doi:10.1088/0957-4484/10/3/308 [67] Zhang, Y.B., Small, J.P., Pontius, W.V., Kim, P.: Fabrication and electric-field dependent transport measurements of meso- scopic graphite devices. Appl. Phys. Lett. 86, 073104 (2005). doi:10.1063/1.1862334 [68] Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). doi:10.1126/science.1102896 [69] Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotke- vich, V.V., Morozov, S.V., Geim, A.K.: Two-dimensional atomic crystals. PNAS 102(3), 10451–10453 (2005). doi:10. 1073/pnas.0502848102 [70] Balandin, A.A., Ghosh, S., Bao, W.Z., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N.: Superior thermal conductivity of single- layer graphene. Nano. Lett. 8(3), 902–907 (2008). doi:10.1021/ nl0731872 [71] Boehm, H.P., Setton, R., Stumpp, E.: Nomenclature and termi- nology of graphite intercalation compounds (IUPAC Recom- mendations 1994). Pure Appl. Chem. 66(9), 1893–1901 (1994). doi:10.1351/pac199466091893 [72] Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). doi:10.1126/science.1102896 [73] Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotke- vich, V.V., Morozov, S.V., Geim, A.K.: Two-dimensional atomic crystals. PNAS 102(3), 10451–10453 (2005). doi:10. 1073/pnas.0502848102 [74] Allen, M.J., Tung, V.C., Kaner, R.B.: Honeycomb carbon: a review of graphene. Chem. Rev. 110(1), 132–145 (2010). doi:10.1021/cr900070d [75] Viculis, L.M., Mack, J.J., Kaner, R.B.: A chemical route to carbon nanoscrolls. Science 299(5611), 1361 (2003). doi:10. 1126/science.1078842 [76] Park, S., Ruoff, R.S.: Chemical methods for the production of graphenes. Nat. Nanotechnol. 4, 217–224 (2009). doi:10.1038/ nnano.2009.58 47 [77] Reina, A., Jia, X.T., Ho, J., Nezich, D., Son, H., Bulovic, V., Mildred Dresselhaus, S., Kong, J.: Large area, few-layer gra- phene films on arbitrary substrates by chemical vapor deposi- tion. Nano Lett. 9(1), 30–35 (2009). doi:10.1021/nl801827v [78] Jiao, L.Y., Wang, X.R., Diankov, G., Wang, H.L., Dai, H.J.: Facile synthesis of high-quality graphene nanoribbons. Nat. Nanotechnol. 5(5), 321–325 (2010). doi:10.1038/nnano.2010.54 [79] Kosynkin, D.V., Higginbotham, A.L., Sinitskii, A., Lomeda, J.R., Dimiev, A., Price, B.K., Tour, J.M.: Longitudinal unzip- ping of carbon nanotubes to form graphene nanoribbons. Nature 458(7240), 872–876 (2009). doi:10.1038/nature07872 [80] Jiao, L.Y., Zhang, L., Wang, X.R., Diankov, G., Dai, H.J.: Narrow graphene nanoribbons from carbon nanotubes. Nature 458(7240), 877–880 (2009). doi:10.1038/nature07919 [81] Xin, G. Q., W. Hwang, N. Kim, S. M. Cho, and H. Chae.: A graphene sheet exfoliated with microwave irradiation and interlinked by carbon nanotubes for high-performance trans- parent flexible electrodes. Nanotechnology Vol. 21, No. 40 (2010). 10.1088/0957-4484/21/40/405201 [82] Sutter, P.: Epitaxial graphene: how silicon leaves the scene. Nat. Mater. 8(3), 171–172 (2009). doi:10.1038/nmat2392 [83] Novoselov, KS, et al.; Science 306, 666-669,(2004) [84] Casiraghi C, et al.; Nano Letters 7, 2711-2717, (2007) [85] Y. Xu, H. Bai, G. Lu, C. Li and G. Shi, J. Am. Chem. Soc., 130 (2008) 5856. [86] S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes A, Y.Y. Jia, Y. Wu, S.T. Nguyen and R.S. Ruoff, Carbon, 45 (2007) 1558. [87] S. Park and R.S. Ruoff, Nature Nanotechnol., 4 (2009) 217. [88] Lotya M, et al.; ACS Nano 4, 3155-3162 (2010) [89] Su CY, et al.; ACS Nano 5, 2332-2339 (2011) [90] Forbeaux I, et al.; Phys. Rev. B 58, 16396-16406 (1998) [91] Cambaz ZG, et al.; Carbon 46, 841-849 (2008) [92] Enderlein, C; Dissertation: Graphene and its Interaction with Di erent Substrates Studied by Angular-Resolved Photoemission Spectroscopy, Freie Universitaet Berlin (2010) [93] Robertson AW, Warner JH, unpublished (2011) [94] Kim KS, et al.; Nature 457, 706-710 (2009 [95] Bae, S, et al.; Nature Nanotech. 5, 574-578 (2010) [96] Forbeaux, I., Themlin, J. M. & Debever, J. M. Heteroepitaxial graphite on 6H- SiC(0001): interface formation through conduction-band electronic structure. Phys. Rev. B 58, 16396–16406 (1998). [97] Berger, C. et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004). [98] Ohta, T., Bostwick, A., Seyller, T., Horn, K. & Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science 313, 951–954 (2006). [99] Virojanadara, C. et al. Homogeneous large-area graphene layer growth on 6H- SiC(0001). Phys. Rev. B 78, 245403 (2008). [100] Core-Shell Nanowire Geometry. ACS Nano 2012, 6, 6687− 6692. [101] Tsai, D. S.; Lin, C. A.; Lien, W. C.; Chang, H. C.; Wang, Y. L.; 48 He, J. H. Ultra-High-Responsivity Broadband Detection of Si MetalSemiconductor-Metal Schottky Photodetectors Improved by ZnO Nanorod Arrays. ACS Nano 2011, 5, 7748−7753. [102] Hsiao, Y. H.; Chen, C. Y.; Huang, L. C.; Lin, G. J.; Lien, D. H.; Huang, J. J.; He, J. H. Light Extraction Enhancement with Radiation Pattern Shaping of Light Emitting Diodes by Waveguiding Nanorods with Impedance-Matching Tips. Nanoscale 2014, 6, 2624−2628. [103] Ho, C. H.; Lien, D. H.; Hsiao, Y. H.; Tsai, M. S.; Chang, D.; Lai, K. Y.; Sun, C. C.; He, J. H. Enhanced Light-Extraction from Hierarchical Surfaces Consisting of p-GaN Microdomes and SiO2 Nanorods for GaN-Based Light-Emitting Diodes. Appl. Phys. Lett. 2013, 103, 161104. [104] Gokus, T. et al. Making graphene luminescent by oxygen plasma treatment. ACS Nano 3, 3963–3968 (2009). [105] Ha, H. D., Jang, M.-H., Liu, F., Cho, Y.-H. & Seo, T. S. Upconversion photoluminescent metal ion sensors via two photon absorption in graphene oxide quantum dots. Carbon 81, 367–375 (2015). |
en_US |