Graphene Based Luminescence and Optoelectronics

Show simple item record

dc.contributor.author Choudhury, Irfan Ahmed
dc.contributor.author Al Mamun, Fahad
dc.date.accessioned 2017-11-03T06:45:59Z
dc.date.available 2017-11-03T06:45:59Z
dc.date.issued 2016-11-20
dc.identifier.citation [1] S. Park and R. S. Ruoff,Nat. Nanotechnol., 2009, 4, 217–224. [2] A. K. Geim and K.S. Novoselov, "The rise of graphene," Nature Materials, vol. 6, no. 183,2007. [3] A.K. Geim, "Graphene: Status and Prospects," Science, vol.324,no.5934, p.1530,June,2009. [4] Yuanbo Zhang et al, "Experimentla Observation of the quantum Hall effect and Berry's phase in graphene," Nature, vol. 438,pp.201-204,September 2005. [5] M Scarselli et al, "Electronic and Optoelectronic nano-devices based on carbon nanotubes," Journal of Physics: Condensed Matter, vol.24, no. 31, 2012. [6] L.G. Wade, Organic Chemistry (5th Edition): Prentice Hall,.2002 [7] A.H.Castro Netoetal, "The electronic properties of graphene," Rev.Mod.Phys,vol. 81, no. 109, Jan. .2009 [8] Peres N M R 2010 Colloquium: the transport properties of graphene: an introduction Rev. Mod. Phys. 82 2673–700. [9] Peres N M R, Guinea F and Castro Neto A H 2006 Electronic properties of disordered two-dimensional carbon Phys. Rev. B 73 125411 [10] Mak K F, Sfeir M Y, Wu Y, Lui C H, Misewich J A and Heinz T F 2008 Measurement of the optical conductivity of graphene Phys. Rev. Lett. 101 196405 [11] Geim A K, Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T and Peres N M R 2008 Fine structure constant defines visual transparency of graphene Science 320 1308 [12] Winnerl S et al 2011 Carrier relaxation in epitaxial graphene photoexcited near the Dirac point Phys. Rev. Lett. 107 237401 [13] Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim,H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nature Phys., vol. 4, no. 7, pp. 532–535, 2008. [14] F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. Ron Shen, “Gate-variable optical transitions in graphene,” Science, vol. 320, no. 5873, pp. 206–209, 2008. [15] B. Sensale-Rodriguez, R. Yan, L. Liu, D. Jena, and H. G. Xing, “Graphene for reconfigurable terahertz optoelectronics,”Proc. IEEE, vol. 101, no. 7, pp. 1705–1716, Jul. 2013. [16] K. Yang, S. Arezoomandan, and B. Sensale-Rodriguez, “The linear and nonlinear THz properties of graphene,” Terahertz Sci. Technol., vol. 6, no. 4, pp. 223–233, 2013. [17] F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene pho- tonics and optoelectronics,” Nature Photon., vol. 4, no. 9, pp. 611–622, 2010. 44 [18] Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano, vol. 6, no. 5, pp. 3677–3694, 2012. [19] A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater 6 ) 2007 ( 183 - 191 . [20] K. Kim, J.Y. Choi, T. Kim, S.H. Cho, H.J. Chung, A role for graphene in siliconbased semiconductor devices, Nature .344-338 (2011) 479 [21] Gierz I, Riedl C, Starke U, Ast C R and Kern K 2008 Atomic hole doping of grapheneNano Lett.84603–7 [22] Coletti C, Riedl C, Lee D S, Krauss B, Patthey L,von Klitzing K, Smet J H and Starke U 2010 Charge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping Phys. Rev.B81235401 [23] Li X, Wang X, Zhang L, Lee S and Dai H 2008 Chemically derived, ultrasmooth graphene nanoribbon semiconductors Science3191229–32 [24] Elias E C et al. Control of graphene’s properties by reversible hydrogenation: evidence for graphene Science 323610,–3,2009 [25] Jaiswal M, Lim C H Y X, Bao Q, Toh C T, Loh K P and Özyilmaz B, Controlled hydrogenation of grapheme sheets and nanoribbonsACS Nano5888–96,2011 [26] Wang F, Liu G, Rothwell S, Nevius M, Tejeda A,Taleb Ibrahimi A, Feldman L C, Cohen P I and Conrad E H Wide-gap semiconducting graphene from nitrogenseeded SiC Nano Lett.134827–32,2013 [27] Takahashi T, Sugawara S, Noguchi E, Sato T and Takahashi T Band-gap tuning of monolayer graphene by oxygena dsorption Carbon73141–5,2014 [28] Balog R et al Bandgap opening in graphene induced by patterned hydrogen adsorptionNat. Mater.9315–9,2010 [29] Berashevich J and Chakraborty T Tunable band gap and magnetic ordering by adsorption of molecules on grapheme Phys. Rev.B 80033404,,2009 [30] E. J. Duplock, M. Scheffler and P. J. D. Lindan,Phys. Rev.Lett., 92, 225502,2004 [31] Y. W. Son, M. L. Cohen and S. G. Louie,Phys. Rev. Lett., 97, 216803,2006 [32] X. Liang, Z. Fu and S. Y. Chou,Nano Lett., 7, 3840,2007, [33] Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill and P. Avouris,Science, 327, 2010 ,662 [34] F. Xia, D. B. Farmer, Y.-M. Lin and P. Avouris,Nano Lett., 10, 715,2010 [35] sung et al.(2 ta jabe) [36] A. J. Gr¨ uneis,J. Phys.: Condens. Matter, 25, 043001,2013 [37] Y. Zhang, T. Tang, C. Girit, Z. Hao, M. Martin, A. Zettle, M. F. Crommie, Y. Shen and F. Wang,Nature, 459, 820,2009 [38] S. J. Sung, P. R. Lee, J. G. Kim, M. T. Ryu, H. M. Park and J. W. Chung, Appl. Phys. Lett., 105, 081605,2014 [39] N. Li, G. Lee, J. W. Yang, H. Kim, M. S. Yeom, [40] R. H. Scheicher, J.-S. Kim and K.-S. Kim,J. Phys. Chem. C,117 , 4309,2013 [41] S. J. Sung, P. R. Lee, J. G. Kim, M. T. Ryu, H. M. Park, and J. W. Chung, Band gap engineering for graphene by using Na+ions, APPLIED PHYSICS LETTERS105, 081605,(2014) [42] Sung etal.Band modification of graphene by using slow Cs+ ions, RSC Adv.,2016,6,9106,(2015) 45 [43] D. Usachov, O. Vilkov, A. Grüneis, D. Haberer, A. Fedorov, V.K. Adamchuk, et al., Nitrogen-doped graphene: efficient growth, structure and electronic properties, Nano Lett. 11 5401 - 5407 , 2011 [44] K. Watanabe, T. Taniguchi, H. Kanda, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal, Nat. Mater -404 3 (2004),409 [45] M. Kan, J. Zhou, Q. Wang, Q. Sun, P. Jena, Tuning the band gap and magnetic properties of BN sheets impregnated with grapheneflakes, Phys. Rev. B ,(2011)84 .205412 [46] P.P. Shinde, V. Kumar, Direct band gap opening in graphene by BN doping:Ab initio calculations, Phys. Rev. B .125401 (2011) 84 [47] X. Fan, Z. Shen, A.Q. Liu, J.L. Kuo, Bandgap opening of graphene by doping small boron nitride domains, Nanoscale 2165-2157 (2012) [48] L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, et al., Atomic layers of hybridized boron nitride and graphene domains, Nat. Mater .435-430 (2010) [49] C.K. Chang, S. Kataria, C.C. Kuo, A. Ganguly, B.Y. Wang, J.Y. Hwang, et al., Bandgap engineering of chemical vapor deposited graphene byin-situ BN doping, ACS Nano .1341-1333 (2013) [50] G.C. Loh, R. Pandey, A grapheme boron nitride lateral heterostructure, J. Mater. Chem. C .5918 ,(2015) [51] P. Nath, S. Chowdhury, D. Sanyal, D. Jana, Ab-initio calculation of electronic and optical properties of nitrogen and boron doped graphene nanosheet, Carbon 73 .282-275 ,(2014) [52] R. Nascimento, J. da R. Martins, R.J.C. Batista, H. Chacham, Band gaps of BNdoped graphene fluctuations, trends, and bounds, J. Phys. Chem. C ,(2015)119 .5061-5055 [53] L. Ferrighi, M.I. Trioni, C.D. Valentin, Boron-doped, nitrogen-doped and codoped graphene on Cu( :(111a DFT-VdW study, J. Phys. Chem. C 119 6064-6056,(2015) [54] P. Rani, V.K. Jindal, Designing band gap of graphene by B and N dopant, RSC Adv. 3 (2013) 802. [55] Z.M. Liu, Y. Zhu, Z.Q. Yang, Half metallicity and electronic structures in armchair BCN-hybrid nanoribbons, J. Chem. Phys. 134 (2011) 074708 [56] Xiong Cao et al. Band Gap Opening of Graphene by Forming Heterojunctions with the 2D Carbonitrides Nitrogenated Holey Graphene, g‑C3N4, and g‑CN: Electric Field Effect,journal of Physical chemistry c,(2016) [57] Balu, R.; Zhong, X.; Pandey, R.; Karna, S. P. Effect of Electric Field on the Band Structure of Graphene/Boron Nitride and Boron Nitride/Boron Nitride Bilayers.Appl. Phys. Lett.2012, 100, .052104 [58] Zhong, X.; Yap, Y. K.; Pandey, R.; Karna, S. P. First-Principles Study of Strain-Induced Modulation of Energy Gaps of Graphene/BN and BN Bilayers.Phys. Rev. B: Condens. Matter Mater. Phys.2011, 83, .193403 [59] Du, A.; Sanvito, S.; Li, Z.; Wang, D.; Jiao, Y.; Liao, T.; Sun, Q.;Ng, Y. H.; Zhu, Z.; Amal, R.; et al. Hybrid Graphene and Graphitic Carbon Nitride Nanocomposite: 46 Gap Opening, Electron-Hole Puddle,Interfacial Charge Transfer, and Enhanced Visible Light Response. J.Am. Chem. Soc.2012, 134, 4393 − 4397 . [60] Li, X.; Dai, Y.; Ma, Y.; Han, S.; Huang, B. Graphene/g-C3N 4Bilayer: Considerable Band Gap Opening and Effective Band Structure Engineering.Phys. Chem. Chem. Phys.2014, 16, 4235−4230 [61] Mahmood, J.; Lee, E. K.; Jung, M.; Shin, D.; Jeon, I. Y.; Jung, S.M.; Choi, H. J.; Seo, J. M.; Bae, S. Y.; Sohn, S. D.; et al. Nitrogenated Holey Two-Dimensional Structures.Nat. Commun.2015, 6, .6486 [62] Mintae Ryu, Paengro Lee, Jingul Kim, Heemin Park and Jinwook Chung , Band gap engineering for single-layer graphene by using slow Li+ions Nanotechnology27(2016) 31LT03(7pp),(2016) [63] Eizenberg, M., Blakely, J.M.: Carbon monolayer phase con- densation on Ni(111). Surf. Sci. 82(1–2), 228–236 (1979). doi:10.1016/0039-6028(79)90330-3 [64] Eizenberg, M., Blakely, J.M.: Carbon interaction with nickel surfaces: monolayer formation and structural stability. J Chem Phys 71(8), 3467 (1979). doi:10.1063/1.438736 [65] Lang, B.: A LEED study of the deposition of carbon on platinum crystal surfaces. Surface Science 53(1), 317–329 (1975). doi:10. 1016/0039-6028(75)90132-6 [66] Lu, X.K., Yu, M.F., Huang, H., Ruoff, R.S.: Tailoring graphite with the goal of achieving single sheets. Nanotechnology 10(3), 269–272 (1999). doi:10.1088/0957-4484/10/3/308 [67] Zhang, Y.B., Small, J.P., Pontius, W.V., Kim, P.: Fabrication and electric-field dependent transport measurements of meso- scopic graphite devices. Appl. Phys. Lett. 86, 073104 (2005). doi:10.1063/1.1862334 [68] Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). doi:10.1126/science.1102896 [69] Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotke- vich, V.V., Morozov, S.V., Geim, A.K.: Two-dimensional atomic crystals. PNAS 102(3), 10451–10453 (2005). doi:10. 1073/pnas.0502848102 [70] Balandin, A.A., Ghosh, S., Bao, W.Z., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N.: Superior thermal conductivity of single- layer graphene. Nano. Lett. 8(3), 902–907 (2008). doi:10.1021/ nl0731872 [71] Boehm, H.P., Setton, R., Stumpp, E.: Nomenclature and termi- nology of graphite intercalation compounds (IUPAC Recom- mendations 1994). Pure Appl. Chem. 66(9), 1893–1901 (1994). doi:10.1351/pac199466091893 [72] Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). doi:10.1126/science.1102896 [73] Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotke- vich, V.V., Morozov, S.V., Geim, A.K.: Two-dimensional atomic crystals. PNAS 102(3), 10451–10453 (2005). doi:10. 1073/pnas.0502848102 [74] Allen, M.J., Tung, V.C., Kaner, R.B.: Honeycomb carbon: a review of graphene. Chem. Rev. 110(1), 132–145 (2010). doi:10.1021/cr900070d [75] Viculis, L.M., Mack, J.J., Kaner, R.B.: A chemical route to carbon nanoscrolls. Science 299(5611), 1361 (2003). doi:10. 1126/science.1078842 [76] Park, S., Ruoff, R.S.: Chemical methods for the production of graphenes. Nat. Nanotechnol. 4, 217–224 (2009). doi:10.1038/ nnano.2009.58 47 [77] Reina, A., Jia, X.T., Ho, J., Nezich, D., Son, H., Bulovic, V., Mildred Dresselhaus, S., Kong, J.: Large area, few-layer gra- phene films on arbitrary substrates by chemical vapor deposi- tion. Nano Lett. 9(1), 30–35 (2009). doi:10.1021/nl801827v [78] Jiao, L.Y., Wang, X.R., Diankov, G., Wang, H.L., Dai, H.J.: Facile synthesis of high-quality graphene nanoribbons. Nat. Nanotechnol. 5(5), 321–325 (2010). doi:10.1038/nnano.2010.54 [79] Kosynkin, D.V., Higginbotham, A.L., Sinitskii, A., Lomeda, J.R., Dimiev, A., Price, B.K., Tour, J.M.: Longitudinal unzip- ping of carbon nanotubes to form graphene nanoribbons. Nature 458(7240), 872–876 (2009). doi:10.1038/nature07872 [80] Jiao, L.Y., Zhang, L., Wang, X.R., Diankov, G., Dai, H.J.: Narrow graphene nanoribbons from carbon nanotubes. Nature 458(7240), 877–880 (2009). doi:10.1038/nature07919 [81] Xin, G. Q., W. Hwang, N. Kim, S. M. Cho, and H. Chae.: A graphene sheet exfoliated with microwave irradiation and interlinked by carbon nanotubes for high-performance trans- parent flexible electrodes. Nanotechnology Vol. 21, No. 40 (2010). 10.1088/0957-4484/21/40/405201 [82] Sutter, P.: Epitaxial graphene: how silicon leaves the scene. Nat. Mater. 8(3), 171–172 (2009). doi:10.1038/nmat2392 [83] Novoselov, KS, et al.; Science 306, 666-669,(2004) [84] Casiraghi C, et al.; Nano Letters 7, 2711-2717, (2007) [85] Y. Xu, H. Bai, G. Lu, C. Li and G. Shi, J. Am. Chem. Soc., 130 (2008) 5856. [86] S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes A, Y.Y. Jia, Y. Wu, S.T. Nguyen and R.S. Ruoff, Carbon, 45 (2007) 1558. [87] S. Park and R.S. Ruoff, Nature Nanotechnol., 4 (2009) 217. [88] Lotya M, et al.; ACS Nano 4, 3155-3162 (2010) [89] Su CY, et al.; ACS Nano 5, 2332-2339 (2011) [90] Forbeaux I, et al.; Phys. Rev. B 58, 16396-16406 (1998) [91] Cambaz ZG, et al.; Carbon 46, 841-849 (2008) [92] Enderlein, C; Dissertation: Graphene and its Interaction with Di erent Substrates Studied by Angular-Resolved Photoemission Spectroscopy, Freie Universitaet Berlin (2010) [93] Robertson AW, Warner JH, unpublished (2011) [94] Kim KS, et al.; Nature 457, 706-710 (2009 [95] Bae, S, et al.; Nature Nanotech. 5, 574-578 (2010) [96] Forbeaux, I., Themlin, J. M. & Debever, J. M. Heteroepitaxial graphite on 6H- SiC(0001): interface formation through conduction-band electronic structure. Phys. Rev. B 58, 16396–16406 (1998). [97] Berger, C. et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004). [98] Ohta, T., Bostwick, A., Seyller, T., Horn, K. & Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science 313, 951–954 (2006). [99] Virojanadara, C. et al. Homogeneous large-area graphene layer growth on 6H- SiC(0001). Phys. Rev. B 78, 245403 (2008). [100] Core-Shell Nanowire Geometry. ACS Nano 2012, 6, 6687− 6692. [101] Tsai, D. S.; Lin, C. A.; Lien, W. C.; Chang, H. C.; Wang, Y. L.; 48 He, J. H. Ultra-High-Responsivity Broadband Detection of Si MetalSemiconductor-Metal Schottky Photodetectors Improved by ZnO Nanorod Arrays. ACS Nano 2011, 5, 7748−7753. [102] Hsiao, Y. H.; Chen, C. Y.; Huang, L. C.; Lin, G. J.; Lien, D. H.; Huang, J. J.; He, J. H. Light Extraction Enhancement with Radiation Pattern Shaping of Light Emitting Diodes by Waveguiding Nanorods with Impedance-Matching Tips. Nanoscale 2014, 6, 2624−2628. [103] Ho, C. H.; Lien, D. H.; Hsiao, Y. H.; Tsai, M. S.; Chang, D.; Lai, K. Y.; Sun, C. C.; He, J. H. Enhanced Light-Extraction from Hierarchical Surfaces Consisting of p-GaN Microdomes and SiO2 Nanorods for GaN-Based Light-Emitting Diodes. Appl. Phys. Lett. 2013, 103, 161104. [104] Gokus, T. et al. Making graphene luminescent by oxygen plasma treatment. ACS Nano 3, 3963–3968 (2009). [105] Ha, H. D., Jang, M.-H., Liu, F., Cho, Y.-H. & Seo, T. S. Upconversion photoluminescent metal ion sensors via two photon absorption in graphene oxide quantum dots. Carbon 81, 367–375 (2015). en_US
dc.identifier.uri http://hdl.handle.net/123456789/134
dc.description Supervised by Dr. Syed Iftekhar Ali AssociateProfessor Electrical and Electronic Engineeringg (EEE) Islamic University of Technology (IUT) en_US
dc.description.abstract Charge carriers in graphene mimic two-dimensional massless Dirac fermions with linear energy dispersion, resulting in unique optical and electronic properties. They exhibit high mobility and strong interaction with electromagnetic radiation over a broad frequency range. Interband transitions in graphene give rise to pronounced optical absorption in the mid-infrared to visible spectral range. Free-carrier intraband transitions, on the other hand, cause low frequency absorption, which varies significantly with charge density and results in strong light extinction at high carrier density. These properties together suggest a rich variety of possible optoelectronic applications for graphene. But graphene is a zero bandgap material which hinders the uses of graphene in luminescent application. In this thesis paper, we have addressed this bandgap problem and reviewed some of the important achievements so far in introducing bandgap in graphene.we have also investigated the optoelectronic properties of graphene and reviewed some of the significant applications.Later, we have discussed about graphene quantum dot and their applications in multicolor light emitting applications and in solar cells en_US
dc.language.iso en en_US
dc.publisher IUT, EEE en_US
dc.title Graphene Based Luminescence and Optoelectronics en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics