dc.identifier.citation |
[1] M. L. Brongersma and V. M. Shalaev, “The case for plasmonics,” science, vol. 328, no. 5977, pp. 440–441, 2010. [2] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature, vol. 424, no. 6950, pp. 824–830, 2003. [3] G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Advanced Materials, vol. 25, no. 24, pp. 3264–3294, 2013. [4] A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Physics reports, vol. 408, no. 3-4, pp. 131–314, 2005. [5] P. K. Maharana, T. Srivastava, and R. Jha, “Low index dielectric mediated surface plasmon resonance sensor based on graphene for near infrared measurements,” Journal of Physics D: Applied Physics, vol. 47, no. 38, 2014. [6] J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors,” Sensors and actuators B: Chemical, vol. 54, no. 1-2, pp. 3–15, 1999. [7] M. A. Butt, S. N. Khonina, and N. L. Kazanskiy, “Ultra-short lossless plasmonic power splitter design based on metal-insulator-metal waveguide,” Laser Physics, vol. 30, no. 1, p. ab5577, 2020. [8] Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, H. Li, and X. Luo, “A plasmonic splitter based on slot cavity,” Optics Express, vol. 19, no. 15, p. 13831, 2011. [9] X. Gao, L. Zhou, X. Y. Yu, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultra-wideband surface plasmonic Y-splitter,” Optics Express, vol. 23, no. 18, p. 23270, 2015. [10] L. Shirafkan Dizaj, K. Abbasian, and T. Nurmohammadi, “A Three-Core Hybrid Plasmonic Polarization Splitter Designing Based on the Hybrid Plasmonic 82 Waveguide for Utilizing in Optical Integrated Circuits,” Plasmonics, vol. 15, no. 6, pp. 2213–2221, 2020. [11] R. H. Sagor, M. S. I. Sumon, and M. Tazwar, “Design and Analysis of a Novel Air Gap–Based Semi-elliptical Nanoplasmonic Coupler,” Plasmonics, vol. 14, no. 6, pp. 1993–2001, 2019. [12] R. A. Wahsheh, Z. Lu, and M. A. Abushagur, “Nanoplasmonic couplers and splitters,” Optics Express, vol. 17, no. 21, pp. 19033–19040, 2009. [13] C. Yeh, T. Otoshi, and F. Shimabukuro, “Thin-ribbon tapered coupler for dielectric waveguides,” In its The Telecommunications and Data Acquisition Report, vol. 1, pp. 42–48, 1994. [14] M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. De Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J. M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photonics Technology Letters, vol. 24, no. 1, pp. 76– 78, 2012. [15] D. F. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Applied Physics Letters, vol. 89, no. 4, 2006. [16] P. Ginzburg and M. Orenstein, “Plasmonic transmission lines: from micro to nano scale with /4 impedance matching,” Optics Express, vol. 15, no. 11, p. 6762, 2007. [17] G. Veronis, W. Shin, and S. Fan, “Compact couplers between dielectric and metal-dielectric-metal plasmonic waveguides,” Optics InfoBase Conference Papers, vol. 15, no. 3, pp. 1158–1160, 2007. [18] D. K. Lau, S. P. Marsh, L. E. Davis, and R. Sloan, “Simplified design technique for high-performance microstrip multisection couplers,” IEEE transactions on microwave theory and techniques, vol. 46, no. 12, pp. 2507–2513, 1998. [19] J. Tao, X. G. Huang, X. Lin, Q. Zhang, and X. Jin, “A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure,” Optics Express, vol. 17, no. 16, p. 13989, 2009. [20] X.-S. Lin and X.-G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Optics Letters, vol. 33, no. 23, p. 2874, 2008. 83 [21] H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Optics Express, vol. 18, no. 17, p. 17922, 2010. [22] P. Tetiana and O. Trubin, “Novel dual-band rectangular dielectric resonator filter,” BIHTEL 2014 - 10th International Symposium on Telecommunications, Proceedings, pp. 2–6, 2014. [23] M. Matsuo, H. Yabuki, and M. Makimoto, “Dual-mode stepped-impedance ring resonator for bandpass filter applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 7, pp. 1235–1240, 2001. [24] R. H. Sagor, M. F. Hassan, S. Sharmin, T. Z. Adry, and M. A. R. Emon, “Numerical investigation of an optimized plasmonic on-chip refractive index sensor for temperature and blood group detection,” Results in Physics, vol. 19, p. 103611, 2020. [25] M. F. O. Hameed and S. Obayya, Computational photonic sensors. Springer International Publishing, 2018. [26] M. S. Luchansky, A. L.Washburn, T. A. Martin, M. Iqbal, L. C. Gunn, and R. C. Bailey, “Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform,” Biosensors and Bioelectronics, vol. 26, no. 4, pp. 1283–1291, 2010. [27] M. R. Rakhshani and M. A. Mansouri-Birjandi, “Engineering Hexagonal Array of Nanoholes for High Sensitivity Biosensor and Application for Human Blood Group Detection,” IEEE Transactions on Nanotechnology, vol. 17, no. 3, pp. 475–481, 2018. [28] E. Economou, “Surface plasmons in thin films,” Physical review, vol. 182, no. 2, p. 539, 1969. [29] J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Physical Review B, vol. 73, no. 3, p. 035407, 2006. [30] D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Physical Review Letters, vol. 47, no. 26, p. 1927, 1981. [31] M. F. Hassan, R. H. Sagor, I. Tathfif, K. S. Rashid, and M. Radoan, “An optimized dielectric-metal-dielectric refractive index nanosensor,” IEEE Sensors Journal, vol. 21, no. 2, pp. 1461–1469, 2020. 84 [32] M. Alam, J. Meier, J. Aitchison, and M. Mojahedi, “Super mode propagation in low index medium,” in Quantum Electronics and Laser Science Conference, p. JThD112, Optical Society of America, 2007. [33] M. Butt, N. Kazanskiy, and S. Khonina, “Hybrid plasmonic waveguide racetrack -ring resonator: Analysis of dielectric and hybrid mode for refractive index sensing applications,” Laser Physics, vol. 30, no. 1, p. 016202, 2019. [34] M. Butt, S. Khonina, and N. Kazanskiy, “Hybrid plasmonic waveguide-assisted metal–insulator–metal ring resonator for refractive index sensing,” Journal of Modern Optics, vol. 65, no. 9, pp. 1135–1140, 2018. [35] H. H. Goldstine and A. Goldstine, “The electronic numerical integrator and computer (eniac),” Mathematical Tables and Other Aids to Computation, vol. 2, no. 15, pp. 97–110, 1946. [36] T. Haigh, P. M. Priestley, M. Priestley, and C. Rope, ENIAC in action: Making and remaking the modern computer. MIT press, 2016. [37] D. A. B. Miller and H. M. Ozaktas, “Limit to the bit-rate capacity of electrical interconnects from the aspect ratio of the system architecture,” Journal of parallel and distributed computing, vol. 41, no. 1, pp. 42–52, 1997. [38] M. Horowitz, C.-K. K. Yang, and S. Sidiropoulos, “High-speed electrical signaling: Overview and limitations,” IEEE Micro, vol. 18, no. 1, pp. 12–24, 1998. [39] S. C. Esener, “Implementation and prospects for chip-to-chip free-space optical interconnects,” in International Electron Devices Meeting. Technical Digest (Cat. No. 01CH37224), pp. 23–5, IEEE, 2001. [40] B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Physical review letters, vol. 77, no. 9, p. 1889, 1996. [41] X. Zhao, Z. Zhang, and S. Yan, “Tunable fano resonance in asymmetric mim waveguide structure,” Sensors, vol. 17, no. 7, p. 1494, 2017. [42] N. Jankovic and N. Cselyuszka, “Multiple fano-like mim plasmonic structure based on triangular resonator for refractive index sensing,” Sensors, vol. 18, no. 1, p. 287, 2018. [43] Q. Yang, X. Liu, F. Guo, H. Bai, B. Zhang, X. Li, Y. Tan, and Z. Zhang, “Multiple fano resonance in mim waveguide system with cross-shaped cavity,” Optik, vol. 220, p. 165163, 2020. 85 [44] M. R. Rakhshani, “Optical refractive index sensor with two plasmonic doublesquare resonators for simultaneous sensing of human blood groups,” Photonics and Nanostructures - Fundamentals and Applications, vol. 39, no. October 2019, p. 100768, 2020. [45] Y.-Y. Xie, Y.-X. Huang, W.-L. Zhao, W.-H. Xu, and C. He, “A novel plasmonic sensor based on metal–insulator–metal waveguide with side-coupled hexagonal cavity,” IEEE Photonics Journal, vol. 7, no. 2, pp. 1–12, 2015. [46] Y.Wang, M. Zheng, Q. Ruan, Y. Zhou, Y. Chen, P. Dai, Z. Yang, Z. Lin, Y. Long, Y. Li, N. Liu, C. W. Qiu, J. K. Yang, and H. Duan, “Stepwise-nanocavityassisted transmissive color filter array microprints,” Research, vol. 2018, pp. 10– 14, 2018. [47] Y. Zhang and M. Cui, “Refractive index sensor based on the symmetric mim waveguide structure,” Journal of Electronic Materials, vol. 48, no. 2, pp. 1005– 1010, 2019. [48] M. A. Butt, S. N. Khonina, and N. L. Kazanskiy, “Metal-insulator-metal nano square ring resonator for gas sensing applications,” Waves in Random and Complex Media, vol. 0, no. 0, pp. 1–11, 2019. [49] H. Su, S. Yan, X. Yang, J. Guo, J. Wang, and E. Hua, “Sensing features of the fano resonance in an MIM waveguide coupled with an elliptical ring resonant cavity,” Applied Sciences (Switzerland), vol. 10, no. 15, 2020. [50] Y.-P. Qi, L.-Y. Wang, Y. Zhang, T. Zhang, B.-H. Zhang, X.-Y. Deng, and X.-X. Wang, “Multiple fano resonances in metal–insulator–metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing,” Chinese Physics B, vol. 29, no. 6, p. 067303, 2020. [51] K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable color filters based on metal-insulator-metal resonators,” Nano Letters, vol. 9, no. 7, pp. 2579–2583, 2009. [52] M. A. Butt, S. N. Khonina, and N. L. Kazanskiy, “A plasmonic colour filter and refractive index sensor applications based on metal-insulator-metal square -ring cavities,” Laser Physics, vol. 30, no. 1, 2020. [53] Z. Zhang, J. Yang, H. Xu, S. Xu, Y. Han, X. He, J. Zhang, J. Huang, D. Chen, and W. Xie, “A plasmonic ellipse resonator possessing hybrid modes for ultracompact chipscale application,” Physica Scripta, vol. 94, no. 12, p. 125511, 2019. 86 [54] A. Akhavan, H. Ghafoorifard, S. Abdolhosseini, and H. Habibiyan, “Metal– insulator–metal waveguide-coupled asymmetric resonators for sensing and slow light applications,” IET Optoelectronics, vol. 12, no. 5, pp. 220–227, 2018. [55] S. Ghorbani, M. A. Dashti, and M. Jabbari, “Plasmonic nano-sensor based on metal-dielectric-metal waveguide with the octagonal cavity ring,” Laser Physics, vol. 28, no. 6, p. 066208, 2018. [56] A. Rashed, B. Gudulluoglu, H. Yun, M. Habib, I. Boyaci, S. Hong, E. Ozbay, and H. Caglayan, “Highly-sensitive refractive index sensing by near-infrared metatronic nanocircuits,” Scientific reports, vol. 8, no. 1, pp. 1–9, 2018. [57] X. Yi, J. Tian, and R. Yang, “Tunable fano resonance in plasmonic mdm waveguide with a square type split-ring resonator,” Optik, vol. 171, pp. 139–148, 2018. [58] M. J. Al Mahmod, R. Hyder, and M. Z. Islam, “A highly sensitive metal– insulator–metal ring resonator-based nanophotonic structure for biosensing applications,” IEEE Sensors Journal, vol. 18, no. 16, pp. 6563–6568, 2018. [59] X. Ren, K. Ren, and C. Ming, “Self-reference refractive index sensor based on independently controlled double resonances in side-coupled u-shaped resonators,” Sensors, vol. 18, no. 5, p. 1376, 2018. [60] R. Zafar, S. Nawaz, G. Singh, A. d’Alessandro, and M. Salim, “Plasmonicsbased refractive index sensor for detection of hemoglobin concentration,” IEEE Sensors Journal, vol. 18, no. 11, pp. 4372–4377, 2018. [61] S. Asgari and N. Granpayeh, “Tunable mid-infrared refractive index sensor composed of asymmetric double graphene layers,” IEEE Sensors Journal, vol. 19, no. 14, pp. 5686–5691, 2019. [62] X. Wang, J. Zhu, X. Wen, X. Wu, Y. Wu, Y. Su, H. Tong, Y. Qi, and H. Yang, “Wide range refractive index sensor based on a coupled structure of au nanocubes and au film,” Optical Materials Express, vol. 9, no. 7, pp. 3079– 3088, 2019. [63] Y. Qi, Y. Wang, X. Zhang, C. Liu, B. Hu, Y. Bai, and X. Wang, “A theoretical study of optically enhanced transmission characteristics of subwavelength metal y-shaped arrays and its application on refractive index sensor,” Results in Physics, vol. 15, p. 102495, 2019. [64] Y. Wen, Y. Sun, C. Deng, L. Huang, G. Hu, B. Yun, R. Zhang, and Y. Cui, “High sensitivity and fom refractive index sensing based on fano resonance in 87 all-grating racetrack resonators,” Optics Communications, vol. 446, pp. 141– 146, 2019. [65] Z. Li, K. Wen, L. Chen, L. Lei, J. Zhou, D. Zhou, Y. Fang, and B. Wu, “Control of multiple fano resonances based on a subwavelength mim coupled cavities system,” IEEE Access, vol. 7, pp. 59369–59375, 2019. [66] X. Yang, E. Hua, M. Wang, Y. Wang, F. Wen, and S. Yan, “Fano resonance in a mim waveguide with two triangle stubs coupled with a split-ring nanocavity for sensing application,” Sensors, vol. 19, no. 22, p. 4972, 2019. [67] Y. Zhang, Y. Kuang, Z. Zhang, Y. Tang, J. Han, R. Wang, J. Cui, Y. Hou, and W. Liu, “High-sensitivity refractive index sensors based on fano resonance in the plasmonic system of splitting ring cavity-coupled mim waveguide with tooth cavity,” Applied Physics A, vol. 125, no. 1, pp. 1–5, 2019. [68] J. Zhu, X. Wang, X. Wu, Y. Su, Y. Xu, Y. Qi, L. Zhang, and H. Yang, “Ultra wide sensing range plasmonic refractive index sensor based on nano-array with rhombus particles,” Chinese Physics B, vol. 29, no. 11, p. 114204, 2020. [69] X. Li, D. Wang, S. Wang, L. Yuan, J. Lei, and X. Li, “Enhanced plasmonicinduced absorption using a cascade scheme and its application as refractiveindex sensor,” Photonic Sensors, vol. 10, no. 2, pp. 162–170, 2020. [70] R. El Haffar, A. Farkhsi, and O. Mahboub, “Optical properties of mim plasmonic waveguide with an elliptical cavity resonator,” Applied Physics A, vol. 126, pp. 1–10, 2020. [71] M. A. A. Butt and N. Kazanskiy, “Enhancing the sensitivity of a standard plasmonic mim square ring resonator by incorporating the nano-dots in the cavity,” Photonics Letters of Poland, vol. 12, no. 1, pp. 1–3, 2020. [72] A. Alipour, A. Mir, and A. Farmani, “Ultra high-sensitivity and tunable dualband perfect absorber as a plasmonic sensor,” Optics & Laser Technology, vol. 127, p. 106201, 2020. [73] M. Butt, S. Khonina, and N. Kazanskiy, “An array of nano-dots loaded mim square ring resonator with enhanced sensitivity at nir wavelength range,” Optik, vol. 202, p. 163655, 2020. [74] J. Zhu and N. Li, “Mim waveguide structure consisting of a semicircular resonant cavity coupled with a key-shaped resonant cavity,” Optics Express, vol. 28, no. 14, pp. 19978–19987, 2020. 88 [75] N. Amoosoltani, N. Yasrebi, A. Farmani, and A. Zarifkar, “A plasmonic nanobiosensor based on two consecutive disk resonators and unidirectional reflectionless propagation effect,” IEEE Sensors Journal, vol. 20, no. 16, pp. 9097– 9104, 2020. [76] Y. Fang, K. Wen, Z. Li, B. Wu, and Z. Guo, “Plasmonic refractive index sensor with multi-channel fano resonances based on mim waveguides,” Modern Physics Letters B, vol. 34, no. 16, p. 2050173, 2020. [77] S. Asgari, S. Pooretemad, and N. Granpayeh, “Plasmonic refractive index sensor based on a double concentric square ring resonator and stubs,” Photonics and Nanostructures-Fundamentals and Applications, vol. 42, p. 100857, 2020. [78] R. Al Mahmud, M. O. Faruque, and R. H. Sagor, “A highly sensitive plasmonic refractive index sensor based on triangular resonator,” Optics Communications, vol. 483, p. 126634, 2021. [79] X.Wang, J. Zhu, Y. Xu, Y. Qi, L. Zhang, H. Yang, and Z. Yi, “A novel plasmonic refractive index sensor based on gold/silicon complementary grating structure,” Chinese Physics B, vol. 30, no. 2, p. 024207, 2021. [80] J. Zhu and C. Wu, “Optical refractive index sensor with fano resonance based on original mim waveguide structure,” Results in Physics, vol. 21, p. 103858, 2021. [81] R. H. Sagor, M. F. Hassan, A. A. Yaseer, E. Surid, and M. I. Ahmed, “Highly sensitive refractive index sensor optimized for blood group sensing utilizing the fano resonance,” Applied Nanoscience, vol. 11, no. 2, pp. 521–534, 2021. [82] T. Xu, Z. Geng, and Y. Su, “A potential plasmonic biosensor based asymmetric metal ring cavity with extremely narrow linewidth and high sensitivity,” Sensors, vol. 21, no. 3, p. 752, 2021. [83] R. Al Mahmud, M. O. Faruque, and R. H. Sagor, “Plasmonic refractive index sensor based on ring-type pentagonal resonator with high sensitivity,” Plasmonics, pp. 1–8, 2021. [84] K. Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Transactions on antennas and propagation, vol. 14, no. 3, pp. 302–307, 1966. [85] A. Taflove and S. C. Hagness, Computational electrodynamics: the finitedifference time-domain method. Artech house, 2005. 89 [86] J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” Journal of computational physics, vol. 114, no. 2, pp. 185–200, 1994. [87] T.Weiland, “A discretization method for the solution of maxwell’s equations for six-component fields.-electronics and communication,(aeü), vol. 31,” 1977. [88] T. Weiland, “Time domain electromagnetic field computation with finite difference methods,” International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 9, no. 4, pp. 295–319, 1996. [89] Z. Rahimi, “The finite integration technique (fit) and the application in lithography simulations,” 2011. [90] C. S. Desai and J. F. Abel, Introduction to the finite element method; a numerical method for engineering analysis. Van Nostrand Reinhold, 1971. [91] M. N. Sadiku, Numerical techniques in electromagnetics with MATLAB. CRC press, 2018. [92] A. D. Raki´c, A. B. Djuriši´c, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Applied optics, vol. 37, no. 22, pp. 5271–5283, 1998. [93] P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser & Photonics Reviews, vol. 4, no. 6, pp. 795–808, 2010. [94] G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Optical Materials Express, vol. 2, no. 4, pp. 478–489, 2012. [95] G.Wang, C.Wang, R. Yang,W. Liu, and S. Sun, “A sensitive and stable surface plasmon resonance sensor based on monolayer protected silver film,” Sensors, vol. 17, no. 12, p. 2777, 2017. [96] A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electronics letters, vol. 36, no. 4, pp. 321– 322, 2000. [97] Z. Zhang, J. Yang, X. He, J. Zhang, J. Huang, D. Chen, and Y. Han, “Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator,” Sensors, vol. 18, no. 1, p. 116, 2018. 90 [98] H. Emami Nejad, A. Mir, and A. Farmani, “Supersensitive and Tunable Nano- Biosensor for Cancer Detection,” IEEE Sensors Journal, vol. 19, no. 13, pp. 4874–4881, 2019. [99] N. L. Kazanskii, M. A. Butt, S. A. Degtyarev, and S. N. Khonina, “Achievements in the development of plasmonic waveguide sensors for measuring the refractive index,” Computer Optics, vol. 44, no. 3, pp. 295–318, 2020. [100] I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Optics express, vol. 16, no. 2, pp. 1020–1028, 2008. [101] Z. Chen, L. Yu, L. Wang, G. Duan, Y. Zhao, and J. Xiao, “A Refractive Index Nanosensor Based on Fano Resonance in the Plasmonic Waveguide System,” IEEE Photonics Technology Letters, vol. 27, no. 16, pp. 1695–1698, 2015. [102] C. Zhang, R. Bai, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. Lee, “Unidirectional reflectionless propagation in plasmonic waveguide system based on phase coupling between two stub resonators,” IEEE Photonics Journal, vol. 9, no. 6, pp. 1–9, 2017. [103] S. A. Maier, Plasmonics: fundamentals and applications. Springer Science & Business Media, 2007. [104] M. Yan and M. Qiu, “Analysis of surface plasmon polariton using anisotropic finite elements,” IEEE Photonics Technology Letters, vol. 19, no. 22, pp. 1804– 1806, 2007. [105] W. K. Jung and K. M. Byun, “Fabrication of nanoscale plasmonic structures and their applications to photonic devices and biosensors,” Biomedical Engineering Letters, vol. 1, no. 3, pp. 153–162, 2011. [106] Q. Yang, X. Liu, F. Guo, H. Bai, B. Zhang, X. Li, Y. Tan, and Z. Zhang, “Multiple Fano resonance in MIM waveguide system with cross-shaped cavity,” Optik, vol. 220, no. April, p. 165163, 2020. [107] X. J. Liang, A. Q. Liu, C. S. Lim, T. C. Ayi, and P. H. Yap, “Determining refractive index of single living cell using an integrated microchip,” Sensors and Actuators, A: Physical, vol. 133, no. 2 SPEC. ISS., pp. 349–354, 2007. [108] D. Mohammad and K. Behnam, “Design of a label-free photonic crystal refractive index sensor for biomedical applications,” Photonics and Nanostructures - Fundamentals and Applications, vol. 31, no. June, pp. 89–98, 2018. 91 [109] N. Ayyanar, G. Thavasi Raja, M. Sharma, and D. Sriram Kumar, “Photonic Crystal Fiber-Based Refractive Index Sensor for Early Detection of Cancer,” IEEE Sensors Journal, vol. 18, no. 17, pp. 7093–7099, 2018. [110] H. Sobral and M. Peña-Gomar, “Determination of the refractive index of glucose-ethanol-water mixtures using spectroscopic refractometry near the critical angle,” Applied Optics, vol. 54, no. 28, p. 8453, 2015. [111] R. Moreira, F. Chenlo, and A. Saint-Olympe, “Kinematic viscosity of aqueous solutions of ethanol and glucose in the range of temperatures from 20 to 45 c,” International Journal of Food Properties, vol. 12, no. 4, pp. 834–843, 2009. [112] M. A. Butt, N. L. Kazanskiy, and S. N. Khonina, “Nanodots decorated asymmetric metal-insulator-metal waveguide resonator structure based on Fano resonances for refractive index sensing application,” Laser Physics, vol. 30, no. 7, 2020. [113] Y. Tang, Z. Zhang, R. Wang, Z. Hai, C. Xue, W. Zhang, and S. Yan, “Refractive index sensor based on fano resonances in metal-insulator-metal waveguides coupled with resonators,” Sensors (Switzerland), vol. 17, no. 4, 2017. [114] C. T. C. Chao, Y. F. C. Chau, H. J. Huang, N. T. Kumara, M. R. R. Kooh, C. M. Lim, and H. P. Chiang, “Highly sensitive and tunable plasmonic sensor based on a nanoring resonator with silver nanorods,” Nanomaterials, vol. 10, no. 7, pp. 1–14, 2020. [115] S.W. Lee, K. S. Lee, J. Ahn, J. J. Lee, M. G. Kim, and Y. B. Shin, “Highly sensitive biosensing using arrays of plasmonic Au nanodisks realized by nanoimprint lithography,” ACS Nano, vol. 5, no. 2, pp. 897–904, 2011. [116] P. Li, Z. Jia, X. Lü, Y. Liu, X. Ning, J. Mo, and J. Wang, “Spectrometer-free biological detection method using porous silicon microcavity devices,” Optics Express, vol. 23, no. 19, p. 24626, 2015. [117] K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics. CRC Press, 1993. [118] H. Gai, J. Wang, and Q. Tian, “Modified debye model parameters of metals applicable for broadband calculations,” Applied optics, vol. 46, no. 12, pp. 2229– 2233, 2007. [119] R. H. Sagor, M. F. Hassan, A. A. Yaseer, E. Surid, and M. I. Ahmed, “Highly sensitive refractive index sensor optimized for blood group sensing utilizing the 92 Fano resonance,” Applied Nanoscience (Switzerland), vol. 11, no. 2, pp. 521– 534, 2021. [120] M. Butt, S. Khonina, and N. Kazanskiy, “Metal-insulator-metal nano square ring resonator for gas sensing applications,” Waves in Random and complex media, pp. 1–11, 2019. [121] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 14, no. 6, pp. 4129–4133, 1996. [122] L. E. Murdoch, K. McKenzie, M. Maclean, S. J. MacGregor, and J. G. Anderson, “Lethal effects of high-intensity violet 405-nm light on Saccharomyces cerevisiae, Candida albicans, and on dormant and germinating spores of Aspergillus niger,” Fungal Biology, vol. 117, no. 7-8, pp. 519–527, 2013. [123] A. D. N. Lago, W. D. R. Ferreira, and G. S. Furtado, “Dental bleaching with the use of violet light only: Reality or Future?,” Photodiagnosis and Photodynamic Therapy, vol. 17, pp. 124–126, 2017. [124] S. Mimasaka, T. Oshima, and M. Ohtani, “Visualization of old bruises in children: Use of violet light to record long-term bruises,” Forensic Science International, vol. 282, pp. 74–78, 2018. [125] C. Ballardin, C. L. Pereira-Stabile, and G. A. V. Stabile, “Use of a generic violet light in the surgical management of medication-related osteonecrosis of the jaws: a technical note,” Oral and Maxillofacial Surgery, vol. 22, no. 4, pp. 477– 481, 2018. [126] M. A. Butt, N. L. Kazanskiy, and S. N. Khonina, “Highly Sensitive Refractive Index Sensor Based on Plasmonic Bow Tie Configuration,” Photonic Sensors, vol. 10, no. 3, pp. 223–232, 2020. [127] C. Li, S. Li, Y. Wang, R. Jiao, L. Wang, and L. Yu, “Multiple fano resonances based on plasmonic resonator system with end-coupled cavities for highperformance nanosensor,” IEEE Photonics Journal, vol. 9, no. 6, pp. 1–9, 2017. [128] Y. Wang, S. Li, Y. Zhang, and L. Yu, “Ultrasharp fano resonances based on the circular cavity optimized by a metallic nanodisk,” IEEE Photonics Journal, vol. 8, no. 6, pp. 1–8, 2016. 93 [129] S. Yu, T. Zhao, J. Yu, and D. Pan, “Tuning multiple fano resonances for on-chip sensors in a plasmonic system,” Sensors, vol. 19, no. 7, p. 1559, 2019. [130] M. Rahmatiyar, M. Afsahi, and M. Danaie, “Design of a refractive index plasmonic sensor based on a ring resonator coupled to a mim waveguide containing tapered defects,” Plasmonics, vol. 15, no. 6, pp. 2169–2176, 2020. 94 |
en_US |