Numerical Investigation and Optimization of High Performance Plasmonic Refractive Index Sensors

Show simple item record

dc.contributor.author Sharmin, Sabiha
dc.contributor.author Surid, Ehsanuzzaman
dc.contributor.author Adry, Tasnim Zaman
dc.date.accessioned 2022-04-20T06:45:34Z
dc.date.available 2022-04-20T06:45:34Z
dc.date.issued 2021-06-30
dc.identifier.citation [1] Z. Han and S. I. Bozhevolnyi, Waveguiding with surface plasmon polaritons. Elsevier B.V., 2014, vol. 4. [Online]. Available: http://dx.doi.org/10.1016/ B978-0-444-59526-3.00005-7 [2] Y.-y. Xie, Y.-x. Huang, W.-l. Zhao, W.-h. Xu, and C. He, “A Novel Plasmonic Sensor Based on Metal – Insulator – MetalWaveguideWith Side-Coupled Hexagonal Cavity A Novel Plasmonic Sensor Based on Metal – Insulator – Metal Waveguide With Side-Coupled Hexagonal Cavity,” vol. 7, no. 2, 2015. [3] F. Chen and D. Yao, “Realizing of plasmon Fano resonance with a metal nanowall moving along MIM waveguide,” Optics Communications, vol. 369, pp. 72–78, 2016. [4] M. R. Rakhshani and M. A. Mansouri-birjandi, “Sensors and Actuators B : Chemical High sensitivity plasmonic refractive index sensing and its application for human blood group identification,” Sensors & Actuators: B. Chemical, vol. 249, pp. 168–176, 2017. [Online]. Available: http: //dx.doi.org/10.1016/j.snb.2017.04.064 [5] Y. Zhang and M. Cui, “Refractive Index Sensor Based on the Symmetric MIM Waveguide Structure,” Journal of Electronic Materials, vol. 48, no. 2, pp. 1005– 1010, 2019. [6] R. Al, M. Omar, F. Rakibul, and H. Sagor, “Plasmonic Refractive Index Sensor Based on Ring - Type Pentagonal Resonator with High Sensitivity,” Plasmonics, no. 0123456789, 2021. [Online]. Available: https: //doi.org/10.1007/s11468-020-01357-7 [7] M. A. Butt, N. L. Kazanskiy, and S. N. Khonina, “Highly Sensitive Refractive Index Sensor Based on Plasmonic Bow Tie Configuration,” no. May, 2020. [8] H. Su, S. Yan, X. Yang, J. Guo, J. Wang, and E. Hua, “Sensing features of the fano resonance in an MIM waveguide coupled with an elliptical ring resonant cavity,” Applied Sciences (Switzerland), vol. 10, no. 15, 2020. 49 [9] Z. Rashid, A. S. Jon, C. Anu, and L. B. Mark, “Plasmonics: the next chip-scale technology,” Materials Today, vol. 9, no. 7-8, pp. 20–27, 2006. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ S1369702106715723 [10] F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Reviews of Modern Physics, vol. 82, no. 1, pp. 729–787, 2010. [11] L. Guyot, A.-P. Blanchard-Dionne, S. Patskovsky, and M. Meunier, “Integrated silicon-based nanoplasmonic sensor,” Optics Express, vol. 19, no. 10, p. 9962, 2011. [12] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature, vol. 424, no. 6950, pp. 824–830, aug 2003. [Online]. Available: http://www.nature.com/articles/nature01937 [13] A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Physics reports, vol. 408, no. 3-4, pp. 131–314, 2005. [14] D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature Photonics, vol. 4, no. 2, pp. 83–91, 2010. [Online]. Available: http://dx.doi.org/10.1038/nphoton.2009.282 [15] S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” Journal of Applied Physics, vol. 98, no. 1, 2005. [16] J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Physical Review B, vol. 33, no. 8, pp. 5186–5201, 1986. [17] E. N. Economou, “Surface plasmons in thin films,” Physical Review, vol. 182, no. 2, pp. 539–554, 1969. [18] R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” Journal of the Optical Society of America A, vol. 21, no. 12, p. 2442, 2004. [19] P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” Journal of Applied Physics, vol. 98, no. 4, 2005. [20] A. E. Craig, G. A. Olson, and D. Sarid, “Experimental observation of the longrange surface-plasmon polariton,” Optics Letters, vol. 8, no. 7, p. 380, 1983. 50 [21] Z. Chen, L. Cui, X. Song, L. Yu, and J. Xiao, “High sensitivity plasmonic sensing based on Fano interference in a rectangular ring waveguide,” Optics Communications, vol. 340, pp. 1–4, 2015. [22] R. H. Sagor, M. F. Hassan, S. Sharmin, T. Z. Adry, and M. A. R. Emon, “Numerical investigation of an optimized plasmonic on-chip refractive index sensor for temperature and blood group detection,” Results in Physics, vol. 19, p. 103611, 2020. [23] D. Fleischman, L. A. Sweatlock, H. Murakami, and H. Atwater, “Hyper-selective plasmonic color filters,” Optics Express, vol. 25, no. 22, p. 27386, 2017. [24] J. Shibayama, H. Kawai, J. Yamauchi, and H. Nakano, “Analysis of a 3D MIM waveguide-based plasmonic demultiplexer using the TRC-FDTD method,” Optics Communications, vol. 452, no. July, pp. 360–365, 2019. [Online]. Available: https://doi.org/10.1016/j.optcom.2019.07.069 [25] Y. Y. Xie, C. He, J. C. Li, T. T. Song, Z. D. Zhang, and Q. R. Mao, “Theoretical Investigation of a Plasmonic Demultiplexer in MIM Waveguide Crossing with Multiple Side-Coupled Hexagonal Resonators,” IEEE Photonics Journal, vol. 8, no. 5, 2016. [26] X. Hu, C. Xin, Z. Li, and Q. Gong, “Ultrahigh-contrast all-optical diodes based on tunable surface plasmon polaritons,” New Journal of Physics, vol. 12, 2010. [27] C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical highspeed communication at the microscale,” Nature Photonics, vol. 9, no. 8, pp. 525–528, 2015. [Online]. Available: http://dx.doi.org/10.1038/nphoton.2015.127 [28] M. A. Butt, S. N. Khonina, and N. L. Kazanskiy, “Metal-insulator-metal nano square ring resonator for gas sensing applications,” in Waves in Random and Complex Media. Taylor & Francis, 2019, vol. 0, no. 0, pp. 1–11. [Online]. Available: https://doi.org/17455030.2019.1568609 [29] S.-y. Tseng, S.-y. Li, S.-y. Yi, A. Y. Sun, D.-y. Gao, and D. Wan, “Food Quality Monitor : Paper-Based Plasmonic Sensors Prepared Through Reversal Nanoimprinting for Rapid Detection of Biogenic Amine Odorants Food Quality Monitor : Paper-Based Plasmonic Sensors Prepared Through Reversal Nanoimprinting for Rapid Detection ,” 2017. [30] M. F. Hassan, I. Tathfif, M. Radoan, and R. H. Sagor, “A concentric double-ring resonator based plasmonic refractive index sensor with glucose sensing capabil- 51 ity,” IEEE Region 10 Annual International Conference, Proceedings/TENCON, vol. 2020-Novem, pp. 91–96, 2020. [31] M. Bahramipanah, M. S. Abrishamian, S. A. Mirtaheri, and J. M. Liu, “Ultracompact plasmonic loop-stub notch filter and sensor,” Sensors and Actuators, B: Chemical, vol. 194, pp. 311–318, 2014. [Online]. Available: http://dx.doi.org/10.1016/j.snb.2013.12.084 [32] Y. Tang, Z. Zhang, R. Wang, Z. Hai, C. Xue, W. Zhang, and S. Yan, “Refractive index sensor based on Fano resonances in metal-insulator-metal waveguides coupled with resonators,” Sensors, vol. 17, no. 4, p. 784, 2017. [33] E. Rafiee, R. Negahdari, and F. Emami, “PT SC,” Photonics and Nanostructures - Fundamentals and Applications, 2018. [Online]. Available: https://doi.org/10. 1016/j.photonics.2018.11.006 [34] M. A. Butt, S. N. Khonina, and N. L. Kazanskiy, “Plasmonic refractive index sensor based on M-I-M square ring resonator,” 2018 International Conference on Computing, Electronic and Electrical Engineering, ICE Cube 2018, pp. 1–4, 2019. [35] ——, “Plasmonic refractive index sensor based on metal–insulator-metal waveguides with high sensitivity,” Journal of Modern Optics, vol. 66, no. 9, pp. 1038–1043, 2019. [Online]. Available: https://doi.org/10.1080/09500340.2019. 1601272 [36] ——, “l P re of,” Optik - International Journal for Light and Electron Optics, p. 163655, 2019. [Online]. Available: https://doi.org/10.1016/j.ijleo.2019.163655 [37] ——, “A multichannel metallic dual nano-wall square split-ring resonator : design analysis and applications,” 2019. [38] M. R. Rakhshani, “Optical refractive index sensor with two plasmonic doublesquare resonators for simultaneous sensing of human blood groups,” Photonics and Nanostructures - Fundamentals and Applications, vol. 39, p. 100768, 2020. [Online]. Available: https://doi.org/10.1016/j.photonics.2020.100768 [39] N. L. Kazanskiy and M. A. Butt, “Enhancing the sensitivity of a standard plasmonic MIM square ring resonator by incorporating nanodots in the cavity,” vol. 12, no. 1, pp. 1–3, 2020. [40] F. Hassan, R. H. Sagor, I. Tathfif, and K. S. Rashid, “An Optimized Dielectric- Metal-Dielectric,” vol. XX, no. XX, pp. 1–9, 2020. [41] R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Applied Physics Letters, vol. 97, no. 25, pp. 2010–2013, 2010. 52 [42] Y. W. Fen and W. M. M. Yunus, “Characterization of the Optical Properties of Heavy Metal Ions Using Surface Plasmon Resonance Technique,” Optics and Photonics Journal, vol. 01, no. 03, pp. 116–123, 2011. [43] N. H. Zainuddin, Y. W. Fen, A. A. Alwahib, M. H. Yaacob, N. Bidin, N. A. S. Omar, and M. A. Mahdi, “Detection of adulterated honey by surface plasmon resonance optical sensor,” Optik, vol. 168, no. 2010, pp. 134–139, 2018. [Online]. Available: https://doi.org/10.1016/j.ijleo.2018.04.048 [44] A. Hardy andW. Streifer, “Coupled Mode Theory of ParallelWaveguides,” Journal of Lightwave Technology, vol. 3, no. 5, pp. 1135–1146, 1985. [45] Y. Chen, “Nanofabrication by electron beam lithography and its applications: A review,” Microelectronic Engineering, vol. 135, pp. 57–72, 2015. [Online]. Available: http://dx.doi.org/10.1016/j.mee.2015.02.042 [46] S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology, vol. 16, no. 9, pp. 1874–1877, 2005. [47] S. Zou, F. Wang, R. Liang, L. Xiao, and M. Hu, “A nanoscale refractive index sensor based on asymmetric plasmonic waveguide with a ring resonator: A review,” IEEE Sensors Journal, vol. 15, no. 2, pp. 646–650, 2014. [48] X. Yi, J. Tian, and R. Yang, “Tunable Fano resonance in plasmonic MDM waveguide with a square type split-ring resonator,” Optik, vol. 171, pp. 139–148, 2018. [Online]. Available: https://doi.org/10.1016/j.ijleo.2018.06.027 53 en_US
dc.identifier.uri http://hdl.handle.net/123456789/1366
dc.description Supervised by Dr. Rakibul Hasan Sagor, Associate Professor, Department of Electrical and Electronic Engineering(EEE), Islamic University of Technology (IUT), Gazipur-1704, Bangladesh. en_US
dc.description.abstract Plasmonic sensors based on SPP are replacing traditional bulky sensors in biosensing and chemical sensing applications, food adulteration, medical diagnostics owing to the distinctive optical properties of MIM models. Two sensor topologies based on metal-insulator-metal (MIM) waveguide are proposed in this work to meet the requirements of label-free detection, low cost, and quick response of a lab-on-chip biosensor. Using the finite element method (FEM) with scattering boundary condition, the transmission spectrum and E-field distributions are computed. The sensing performance in both structures is improved by inserting nanodots (NDs) in the high E-field region of the MIM structures. A MIM waveguide and a laterally coupled square ring resonator (SRR) with diagonally inserted NDs on two opposite sides of the square and a rectangular cavity offers a maximum sensitivity of 1550 nm/RIU and a maximum FOM of 68.45 initially. The second structure designed with a square ring resonator (SRR) and a circular ring resonator (CRR) provides an initial sensitivity of 2090 nm/RIU and the initial FOM is 41.6. Enforcing simultaneous optimization of structural parameters and strengthening light-matter interaction by filling NDs in high E-field region, the sensitivity of the first structure increases to 2470 nm/RIU with a FOM of 85.17. Similarly, a maximum sensitivity of 2850 nm/RIU with 105.95 FOM is recorded after the optimization of the second structure. The first proposed structure is investigated as a food adulterant detector, whereas the other is tested for its tolerance of possible manufacturing defect. The designs are comparable to many excellent sensors in the literature due to simplicity, compact design, and easy manufacturing process, as well as the plasmonic devices’ desirable performance metrics. en_US
dc.language.iso en en_US
dc.publisher Department of Electrical and Electronic Engineering, Islamic University of Technology (IUT), Board Bazar, Gazipur-1704, Bangladesh en_US
dc.title Numerical Investigation and Optimization of High Performance Plasmonic Refractive Index Sensors en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics