dc.identifier.citation |
[1] M.S. Goughari, S. Jeon, H.J. Kwon & T. Beheshtian, “Focused ultrasound surgery of breast cancer:A Computational study on a realistic patient model,” CSME International Congress, May 27-30, 2018. [2] J. M. Allen, "Economic/societal burden of metastatic breast cancer: a US perspective," Am.J.Manag Care, Vol. 16, pp. 697-704, Sep 2010. [3] “Types of breast cancers,” A.C. Society, Jun 2013, https://www. cancer.org/cancer/breastcancer/ understanding-a-breast-cancer-diagnosis/types-of-breastcancer.html/(AccessTime: 06.09.2020). [4] “Classification of breast cancers,” National cancer institute, May 2016, https://www.bcna.org.au/understanding-breast-cancer/what-is-breast-cancer/(AccessTime: 20.05.2019). [5] G. N. Sharma, R. Dave, J. Sanadya, P. Sharma & K. K Sharma, “Various types and management of breast cancer: An overview,” JAdv Pharm Technol Res, 1(2): 109–126, Apr-Jun, 2010. [6] M. Sethi & S.K. Chakarvarti, " Hyperthermia Techniques for cancer treatment: A Review," Int. Jour of PharmTech Research Vol. 8. No. 6, Sept 1 2015. [7] P. Nantivatana, “A Study of Heat Distribution for Microwave Ablation using Finite Element,” Department of Electrical Engineering Sripatum University, Bangkok, 2010. [8] "Hyperthermia in Cancer Treatment," Blog post. National Cancer Institue. N.p, 31 Aug. 2011. https://www.cancer.gov / (Access Time: 20.06.2021). [9] J. E. Kennedy, “High-intensity focused ultrasound in the treatment of solid tumors,” Nat. Rev. Cancer, vol. 5, no. 4, p. 321, 2005. [10] S.N. Goldberg, G. S. Gazelle & P. R. Mueller, “Thermal ablation therapy for focal1 malignancy: a unified approach to underlying principles, techniques, and diagnostic imaging guidance,” Am. J. Roentgenol., vol. 174, no. 2, pp. 323–331, 2000. [11] Hynynen K, Shimm D, Anhalt D, Stea B, Sykes H, Cassady J.R, Roemer R.B. “Temperature distributions during clinical scanned, focused ultrasound hyperthermia treatments”. Int J Hyperthermia. No. 6, pp. 891–908. 1990. [12] Lu X.Q, Burdette E.C, Bornstein B.A, Hansen J.L, Svensson GK. “Design of an ultrasonic therapy system for breast cancer treatment”. Int J Hyperthermia No. 12, pp.375–399, 1996. [13] Sekins K.M, Leeper D.B, Hoffman J.K, Keilman G.W, Ziskin M.C, Wolfson MR,Shaffer T.H. “Feasibility of lung cancer hyperthermia using breathable perfluorochemical (PFC) liquids. Part II: Ultrasound hyperthermia,” Int. Jour. Hyperthermia No. 20:278–99.2004. 53 [14] J. M Martínez & B. J Jarosz. “3D perfused brain phantom for interstitial ultrasound thermal therapy and imaging: design, construction and characterization”, physics in medicine and biology. Vol 60, No. 5,10 Feb, 2015. [15] Mikaya L. D. Lumöri. “Experimentally Based Modelling of Field Sources for Three- Dimensional Computation of SAR in Electromagnetic Hyperthermia and Treatment Planning”, IEEE transactions on microwave theory and techniques, Vol. 48, No. 9, September 2000. [16] A. Dhiraj, M. Skliar & R.B. Roemer. “Model Predictive Control of Ultrasound Hyperthermia Treatments of Cancer”, Proceedings of the American Control Conference Anchorage, AK May 8-10.2002. [17] F. Sato, M. Jojo, H.Matsuki, T. Sato, M. Sendoh, K. Ishiyama, & K. Ichi Arai. “The Operation of a Magnetic Micro machine for Hyperthermia and Its Exothermic Characteristic”, IEEE Transactions on magnetic, Vol. 38, No. 5, September 2002. [18] T. Juang, D. Neuman, J. Schlorff, P. R. Stauffer. “Construction of a Conformal Water Bolus Vest Applicator for Hyperthermia Treatment of Superficial Skin Cancer,” Proceedings of the 26th Annual Int. Con. of the IEEE EMBS San Francisco, CA, USA, September 1-5, 2004. [19] M. Popovic & L.Duong. “Phased Array for Microwave Hyperthermia: A Preliminary Study in a Computational Muscle Phantom”, IEEE 0-7803-8883-6/05/$20.00, 2005. [20] Domenica A. M. Iero, L. Crocco & T. Isernia. “Thermal and Microwave Constrained Focusing for Patient-Specific Breast Cancer Hyperthermia: A Robustness Assessment”, IEEE transaction on antennas and propagation. Vol. 62, No. 2, February 2014. [21] J.p .sites, Plymouth, Philip.R, G. Stacy, M.D.Millar, St.Anthony et al. “Perfusion hyperthermia treatment system and method”. Patent Number: 5,730,720, Mar. 24, 1998. [22] Ardith W. El-Kareh and Timothy W. Secomb, “A Theoretical Model for Intraperitoneal Delivery of Cisplatin and the Effect of Hyperthermia on Drug Penetration Distance”, Neoplasia. Vol. 6, No. 2, pp. 117 – 127, March/April 2004. [23] S. Mulier, J.P. Claes, V. Dierieck, J.O. Amiel, J.P. Pahaut, L. Marcelis, F. Bastin, D. Vanderbeeken , C. Finet , S. Cran et al. ‘Survival Benefit of Adding Hyperthermic Intraperitoneal Chemotherapy (HIPEC) at the Different Time-points of Treatment of Ovarian Cancer: Review of Evidence’, Current Pharmaceutical Design, No.18, pp. 3793-3803, 2012. [24] E. de Bree, M. Christodoulakis & D. Tsiftsis. “Malignant peritoneal mesothelioma treated by continuous hyperthermic peritoneal perfusion chemotherapy”, Annals of Oncology Netherlands No.11, pp. 753-756, 2000. [25] I. V. Larina, B. Mark E, Taras V. Ashit Kov, Christian B. Is, Kirill V.Larin and R. O. Esenliev. “Enhancement of drug delivery in tumors by using interactions of nanoparticles with ultrasound radiation”, Technology in cancer research and treatments, Vol 4, No. 2, ISSN 1533-0346April 2005. 54 [26] J. E.Nicholson. “Selective enhancement 0f hyperthermia in RF and microwave irradiation of diseased or excess U’S’ patent documents tissue”, Patent Number: 6, 131, 577, Oct. 17, 2000. [27] J. Kanzius, Erie, PA, “Enhanced systems and methods for Rf-induced hyperthermia II”, No. us 2007/0250139 a1, Oct. 25, 2007. [28] Riadh W. Y. Habash, R. Bansal, D. Krewski, and H. T. Alhafid. “Thermal Therapy, Part 2: Hyperthermia Techniques, Critical reviews in Biomedical Engineering,” Vol.6, No.34, pp.491– 542, 2006. [29] R.R. Sci. “Piotr gas, study on interstitial microwave hyperthermia with multi-slot coaxial antenna,” Techn. – Électrotechn. Et Énerg, Vol.59, No.2, pp. 215–224, Bucarest, 2014. [30] A. J. Fenn, V. Sathiaseelan, G. A. King, and P. R. Stauffer, “Improved localization of energy deposition in adaptive phased-array hyperthermia treatment of cancer,” Lincoln Lab. J., Vol. 9, No. 2, pp. 187–195, 1996. [31] C. J. Diederich and K. Hynynen, “Ultrasound technology for hyperthermia,” Ultrasound Med. Biol., Vol. 25, pp. 871–887, Jul. 1999. [32] T. J. Dubinsky, C. Cuevas, M. K. Dighe, O. Kolokythas, & J. H. Hwang, “High-intensity focused ultrasound: current potential and oncologic applications,” Am. J. Roentgenol, Vol. 190, No.1, pp. 191–199, 2008. [33] R.J. van den Bijgaart, D.C. Eikelenboom, M.Hoogenboom, J. J. Fütterer, M. H. den Brok & G. J. Adema, "Thermal and mechanical high-intensity focused ultrasound: perspectives on tumor ablation, immune effects and combination strategies,"Cancer Immunol Immunother, Vol.66, pp.247–258, 2017. [34] Z. Izadifar, P. Babyn & D. Chapman,"Mechanical and biological effects of ultrasound: a review of present knowledge" Ultrasound in Medicine and Biology, 2017. [35] J.L. Dillenseger, S. Esneault, & C. Garnier. "FFT-based computation of the bioheat transfer equation for the HCC ultrasound surgery therapy modeling," Engineering in Medicine and Biology Society. IEEE, 2008. [36] J. E. Kennedy et al., “High-intensity focused ultrasound for the treatment of liver tumours,” Ultrasonics, Vol. 42, No. 1, pp. 931– 935, 2004. [37] C. J. Diederich, "Thermal ablation and high-temperature thermal therapy: overview of technology and clinical implementation," Int. Jour. of hyperthermia, vol. 21, no. 8, pp. 745-753. 2005. [38] L. Douglas, B. Nadine, R. Michael, "Overview of Therapeutic Ultrasound Applications and Safety Considerations," Journal of ultrasound in medicine, April, 2012. [39] H. Luo, J. Kusunose, G. Pinton, C. F. Caskey, & W.A. Grissom, "Rapid quantitative imaging of high intensity ultrasonic pressure fields," The Journal of the Acoustical Society of America 148, 55 660, July,2020. [40] A Luna, Rajni. “Hyperthermia, an initiative to treat cancer and tumour: A Review”, Int. Jour. of engineering trends and Technology (IJETT) – Vol.9, No. 11 - Mar 2014. [41] Gupta A.K & Gupta M. “Synthesis and surface engineering of iron oxide Nanoparticles for biomedical applications biomaterials” Vol.26, pp. 3995-4021, 2005. [42] R. Martínez, A. Vera, & L. Leija, “HIFU induced heating modelling by using the finite element method,” Phys. Procedia, vol. 63, pp. 127–133, 2015. [43] A. Chanmugam, R. Hatwar & C. Herman, “Thermal analysis of cancerous breast model,”Proceedings of the ASME 2012 International Mechanical Engineering Congress & Exposition IMECE2012, November 9-15, 2012. [44] C. Hammer, A. Fanning & J. Crowe, "Overview of Breast Cancer Staging and Surgical Treatment Options," Cleveland Clinic Journal of Medicine, 75 Suppl 1pp. S10-6, 2008, [45] "Focused ultrasound induced heading in tissue phantom" COMSOL, Feb.12,2014, http://www.comsol.com/model/focused-ultrasound induced-heating-in-tissue-phantom-12659/ (Access Time 20.06.2021). [46] J. Huang, R. G. Holt, R. O. Cleveland, and R. A. Roy, “Experimental validation of a tractable numerical model for focused ultrasound heating in flow-through tissue phantoms,” J. Acoust. Soc. Am., Vol. 116, No. 4, pp. 2451–2458, 2004 [47] “Transducers,” May 2009, https://www.google.com/search?q=types+of+transducers&source /Access Time: 27.09.2020). [48] O. M. Hassan, N.S.D. Hassan & Y.M. kadah, “Modeling of Ultrasound Hyperthermia Treatment of Breast Tumors”, 26th Nat. Radio Sci. Conf. Egypt, March, 2009. [49] A M. Leylek, G. J. Whitman, V. S. Vilar, N. Kisilevzky & S.Faintuch, “Radiofrequency Ablation for Breast Cancer”, Tech. Vasc. Interventional Rad Vol.16, pp.269-276, 2013. [50] G. ter Haar, “Safety first: Progress in Calibrating High-intensity Focused Ultrasound Treatments”, Imaging in Medicine, Vol. 5, Issue 6, 2013. |
en_US |