| Login
dc.contributor.author | Prottasha, Fatema Zerin | |
dc.contributor.author | Hasan, Mohammad Mahmudul | |
dc.contributor.author | Shanto, Shuvo Islam | |
dc.date.accessioned | 2022-04-20T07:03:25Z | |
dc.date.available | 2022-04-20T07:03:25Z | |
dc.date.issued | 2021-03-30 | |
dc.identifier.citation | [1] MariaConleyMD, “Aging and Sleep Quality: What You Should Know,” Medium, Jun. 28, 2019. https://medium.com/@mariaannconley/aging-and-sleep-quality-what-you-should-know-c7f7d269e67b (accessed Mar. 09, 2021). [2] “Wartung / Maintenance.” https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-0028-1094611 (accessed Mar. 09, 2021). [3] R. Boostani, F. Karimzadeh, and M. Nami, “A comparative review on sleep stage classification methods in patients and healthy individuals,” Computer Methods and Programs in Biomedicine, vol. 140, pp. 77–91, Mar. 2017, doi: 10.1016/j.cmpb.2016.12.004. [4] B. Şen, M. Peker, A. Çavuşoğlu, and F. V. Çelebi, “A Comparative Study on Classification of Sleep Stage Based on EEG Signals Using Feature Selection and Classification Algorithms,” J Med Syst, vol. 38, no. 3, p. 18, Mar. 2014, doi: 10.1007/s10916-014-0018-0. [5] “Efficient sleep stage classification based on EEG signals.” https://ieeexplore.ieee.org/abstract/document/6845193/ (accessed Mar. 10, 2021). [6] A. Anokhin and F. Vogel, “EEG Alpha rhythm frequency and intelligence in normal adults,” Intelligence, vol. 23, no. 1, pp. 1–14, Jul. 1996, doi: 10.1016/S0160-2896(96)80002-X. [7] “Mid-Sagittal Cross Section of Brain | Brain anatomy, Brain anatomy and function, Medical anatomy.” https://www.pinterest.com/pin/281123201711807180/ (accessed Mar. 10, 2021). [8] P. A. Abhang, B. W. Gawali, and S. C. Mehrotra, “Chapter 3 - Technical Aspects of Brain Rhythms and Speech Parameters,” in Introduction to EEG- and Speech-Based Emotion Recognition, P. A. Abhang, B. W. Gawali, and S. C. Mehrotra, Eds. Academic Press, 2016, pp. 51–79. [9] “Frontiers | Electroencephalography: Clinical Applications During the Perioperative Period | Medicine.” https://www.frontiersin.org/articles/10.3389/fmed.2020.00251/full (accessed Mar. 10, 2021). [10] E. F. M. Wijdicks and R. E. Cranford, “Clinical Diagnosis of Prolonged States of Impaired Consciousness in Adults,” Mayo Clinic Proceedings, vol. 80, no. 8, pp. 1037–1046, Aug. 2005, doi: 10.4065/80.8.1037. [11] “Disorders of consciousness,” nhs.uk, May 09, 2018. https://www.nhs.uk/conditions/disorders-of-consciousness/ (accessed Mar. 11, 2021). [12] “The vegetative state | The BMJ.” https://www.bmj.com/content/341/bmj.c3765.short (accessed Mar. 09, 2021). [13] J. T. Giacino et al., “The minimally conscious state: Definition and diagnostic criteria,” Neurology, vol. 58, no. 3, pp. 349–353, Feb. 2002, doi: 10.1212/WNL.58.3.349. 49 [14] “Coma,” nhs.uk, Oct. 18, 2017. https://www.nhs.uk/conditions/coma/ (accessed Mar. 11, 2021). [15] “Georgian Medical News,” ResearchGate. https://www.researchgate.net/journal/Georgian-Medical-News-1512-0112 (accessed Mar. 09, 2021). [16] MEDIAmaker, “Glasgow Coma Scale.” https://www.headway.org.uk/about-brain-injury/individuals/effects-of-brain-injury/coma-and-reduced-awareness-states/glasgow-coma-scale/ (accessed Mar. 11, 2021). [17] “ASSESSMENT OF COMA AND IMPAIRED CONSCIOUSNESS: A Practical Scale - ScienceDirect.” https://www.sciencedirect.com/science/article/abs/pii/S0140673674916390 (accessed Mar. 09, 2021). [18] G. Teasdale and B. Jennett, “Assessment and prognosis of coma after head injury,” Acta neurochir, vol. 34, no. 1, pp. 45–55, Mar. 1976, doi: 10.1007/BF01405862. [19] B. Jennett, G. Teasdale, R. Braakman, J. Minderhoud, J. Heiden, and T. Kurze, “Prognosis of Patients with Severe Head Injury,” Neurosurgery, vol. 4, no. 4, pp. 283–289, Apr. 1979, doi: 10.1227/00006123-197904000-00001. [20] “Protocol for the Electroencephalography Guidance of Anesthesia to Alleviate Geriatric Syndromes (ENGAGES) study: a pragmatic, randomised clinical trial | BMJ Open.” https://bmjopen.bmj.com/content/6/6/e011505 (accessed Mar. 10, 2021). [21] T. Ph, “3 Anesthesia Techniques and Monitors,” p. 2. [22] “Figure 2: Frontal cortex EEG recordings showing changes seen at the...,” ResearchGate. https://www.researchgate.net/figure/Frontal-cortex-EEG-recordings-showing-changes-seen-at-the-three-anesthetic-endpoints_fig5_267746431 (accessed Mar. 10, 2021). [23] T. Zoughi and R. Boostani, “Analyzing autocorrelation fluctuation of EEG signal for estimating depth of anesthesia,” in 2010 18th Iranian Conference on Electrical Engineering, May 2010, pp. 24–29, doi: 10.1109/IRANIANCEE.2010.5507110. [24] M. B. & Spine, “EEG Electroencephalogram | Mayfield Brain & Spine.” https://mayfieldclinic.com/pe-eeg.htm (accessed Mar. 10, 2021). [25] “Figure 3: 10-20 system of electrode placement.,” ResearchGate. https://www.researchgate.net/figure/10-20-system-of-electrode-placement_fig3_237777779 (accessed Mar. 10, 2021). [26] “Electrooculogram - an overview | ScienceDirect Topics.” https://www.sciencedirect.com/topics/nursing-and-health-professions/electrooculogram (accessed Mar. 10, 2021). [27] http://science.education.nih.gov/supplements/nih3/sleep/guide/info-sleep.htm, English: Placement of electrodes to determine EEG, EOG, and EMG. 2014. [28] “10–20 system (EEG),” Wikipedia. Jan. 29, 2021, Accessed: Mar. 10, 2021. [Online]. Available: https://en.wikipedia.org/w/index.php?title=10%E2%80%9320_system_(EEG)&oldid=1003622197. [29] B. Kemp, A. Zwinderman, B. Tuk, H. Kamphuisen, and J. Oberyé, “The Sleep-EDF Database [Expanded].” physionet.org, 2018, doi: 10.13026/C2X676. 50 [30] B. Kemp, A. H. Zwinderman, B. Tuk, H. A. C. Kamphuisen, and J. J. L. Oberye, “Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG,” IEEE Transactions on Biomedical Engineering, vol. 47, no. 9, pp. 1185–1194, Sep. 2000, doi: 10.1109/10.867928. [31] M. Seeck et al., “The standardized EEG electrode array of the IFCN,” Clinical Neurophysiology, vol. 128, no. 10, pp. 2070–2077, Oct. 2017, doi: 10.1016/j.clinph.2017.06.254. [32] J. M. Hockaday, F. Potts, E. Epstein, A. Bonazzi, and R. S. Schwab, “Electroencephalographic changes in acute cerebral anoxia from cardiac or respiratory arrest,” Electroencephalography and Clinical Neurophysiology, vol. 18, no. 6, pp. 575–586, May 1965, doi: 10.1016/0013-4694(65)90075-1. [33] S. Vm, “Prognostically important EEG coma patterns in diffuse anoxic and traumatic encephalopathies in adults.,” J Clin Neurophysiol, vol. 5, no. 2, pp. 161–174, Apr. 1988, doi: 10.1097/00004691-198804000-00003. [34] “EEG Abnormality Grades and Subdivisions of Prognostic Importance in Traumatic and Anoxic Coma in Adults - V. M. Synek, 1988.” https://journals.sagepub.com/doi/abs/10.1177/155005948801900310?journalCode=eega (accessed Mar. 11, 2021). [35] V. M. Synek, “Value of a Revised EEG Coma Scale for Prognosis after Cerebral Anoxia and Diffuse Head Injury,” Clinical Electroencephalography, vol. 21, no. 1, pp. 25–30, Jan. 1990, doi: 10.1177/155005949002100111. [36] G. B. Young, “The EEG in Coma,” Journal of Clinical Neurophysiology, vol. 17, no. 5, pp. 473–485, Sep. 2000. [37] R. P. Brenner, “The Interpretation of the EEG in Stupor and Coma,” The Neurologist, vol. 11, no. 5, pp. 271–284, Sep. 2005, doi: 10.1097/01.nrl.0000178756.44055.f6. [38] J. Hofmeijer, T. M. J. Beernink, F. H. Bosch, A. Beishuizen, M. C. Tjepkema-Cloostermans, and M. J. A. M. van Putten, “Early EEG contributes to multimodal outcome prediction of postanoxic coma,” Neurology, vol. 85, no. 2, pp. 137–143, Jul. 2015, doi: 10.1212/WNL.0000000000001742. [39] B. Bergamasco, L. Bergamini, T. Doriguzzi, and D. Fabiani, “EEG sleep patterns as a prognostic criterion in post-traumatic coma,” Electroencephalography and Clinical Neurophysiology, vol. 24, no. 4, pp. 374–377, Apr. 1968, doi: 10.1016/0013-4694(68)90198-3. [40] C. IBER, “The AASM Manual for the Scoring of Sleep and Associated Events : Rules,” Terminology and Technical Specification, 2007, Accessed: Mar. 12, 2021. [Online]. Available: https://ci.nii.ac.jp/naid/10024500923/. [41] K. Aboalayon, M. Faezipour, W. Almuhammadi, and S. Moslehpour, “Sleep Stage Classification Using EEG Signal Analysis: A Comprehensive Survey and New Investigation,” Entropy, vol. 18, no. 9, p. 272, Aug. 2016, doi: 10.3390/e18090272. [42] P. Anderer et al., “Artifact Processing in Computerized Analysis of Sleep EEG – A Review,” Neuropsychobiology, vol. 40, no. 3, pp. 150–157, 1999, doi: 10.1159/000026613. 51 [43] M. Toussaint et al., “An architecture for EEG signal processing and interpretation during sleep (ESPIS),” Computer Methods and Programs in Biomedicine, vol. 45, no. 1–2, pp. 55–60, Oct. 1994, doi: 10.1016/0169-2607(94)90016-7. [44] L. Fraiwan, K. Lweesy, N. Khasawneh, H. Wenz, and H. Dickhaus, “Automated sleep stage identification system based on time–frequency analysis of a single EEG channel and random forest classifier,” Computer Methods and Programs in Biomedicine, vol. 108, no. 1, pp. 10–19, Oct. 2012, doi: 10.1016/j.cmpb.2011.11.005. [45] U. R. Acharya, E. C.-P. Chua, K. C. Chua, L. C. Min, and T. Tamura, “ANALYSIS AND AUTOMATIC IDENTIFICATION OF SLEEP STAGES USING HIGHER ORDER SPECTRA,” Int. J. Neur. Syst., vol. 20, no. 06, pp. 509–521, Dec. 2010, doi: 10.1142/S0129065710002589. [46] P. Achermann, R. Hartmann, A. Gunzinger, W. Guggenbühl, and A. A. Borbély, “All-night sleep EEG and artificial stochastic control signals have similar correlation dimensions,” Electroencephalography and Clinical Neurophysiology, vol. 90, no. 5, pp. 384–387, May 1994, doi: 10.1016/0013-4694(94)90054-X. [47] L. L. Imbach, E. Werth, U. Kallweit, J. Sarnthein, T. E. Scammell, and C. R. Baumann, “Inter-Hemispheric Oscillations in Human Sleep,” PLoS ONE, vol. 7, no. 11, p. e48660, Nov. 2012, doi: 10.1371/journal.pone.0048660. [48] L. Liu, H. Hsu, and E. W. Grafarend, “Normal Morlet wavelet transform and its application to the Earth’s polar motion,” Journal of Geophysical Research: Solid Earth, vol. 112, no. B8, 2007, doi: https://doi.org/10.1029/2006JB004895. [49] M. X. Cohen, “A better way to define and describe Morlet wavelets for time-frequency analysis,” NeuroImage, vol. 199, pp. 81–86, Oct. 2019, doi: 10.1016/j.neuroimage.2019.05.048. [50] E. W. Weisstein, “Fast Fourier Transform.” https://mathworld.wolfram.com/FastFourierTransform.html (accessed Mar. 11, 2021). [51] R. N. Youngworth, B. B. Gallagher, and B. L. Stamper, “An overview of power spectral density (PSD) calculations,” in Optical Manufacturing and Testing VI, Aug. 2005, vol. 5869, p. 58690U, doi: 10.1117/12.618478. [52] A. Phinyomark, S. Thongpanja, H. Hu, P. Phukpattaranont, and C. Limsakul, “The Usefulness of Mean and Median Frequencies in Electromyography Analysis,” Computational Intelligence in Electromyography Analysis - A Perspective on Current Applications and Future Challenges, Oct. 2012, doi: 10.5772/50639. [53] “Kaiser window - MATLAB kaiser.” https://www.mathworks.com/help/signal/ref/kaiser.html (accessed Mar. 14, 2021). [54] F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proceedings of the IEEE, vol. 66, no. 1, pp. 51–83, Jan. 1978, doi: 10.1109/PROC.1978.10837. [55] P. Welch, “The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms,” IEEE Transactions on Audio and Electroacoustics, vol. 15, no. 2, pp. 70–73, Jun. 1967, doi: 10.1109/TAU.1967.1161901. 52 [56] “EEG analysis,” Wikipedia. Mar. 01, 2021, Accessed: Mar. 11, 2021. [Online]. Available: https://en.wikipedia.org/w/index.php?title=EEG_analysis&oldid=1009688265. [57] “Understanding Correlation - Technical Articles.” https://www.allaboutcircuits.com/technical-articles/understanding-correlation/ (accessed Mar. 11, 2021). [58] J. Tadeu et al., “INTELLIGENT WHILE-DRILLING SYSTEMS,” Mar. 2021. [59] C. Meisel, K. Bailey, P. Achermann, and D. Plenz, “Decline of long-range temporal correlations in the human brain during sustained wakefulness,” Scientific Reports, vol. 7, no. 1, Art. no. 1, Sep. 2017, doi: 10.1038/s41598-017-12140-w. [60] G. F. Zebende, F. M. O. Filho, and J. A. L. Cruz, “Auto-correlation in the motor/imaginary human EEG signals: A vision about the FDFA fluctuations,” PLOS ONE, vol. 12, no. 9, p. e0183121, Sep. 2017, doi: 10.1371/journal.pone.0183121. [61] A. F. Farag, S. M. El-Metwally, and A. A. A. Morsy, “Automated Sleep Staging Using Detrended Fluctuation Analysis of Sleep EEG,” in Soft Computing Applications, Berlin, Heidelberg, 2013, pp. 501–510, doi: 10.1007/978-3-642-33941-7_44. [62] S. Cekic, D. Grandjean, and O. Renaud, “Time, Frequency & Time-Varying Causality Measures in Neuroscience,” arXiv:1704.03177 [stat], Apr. 2017, Accessed: Mar. 11, 2021. [Online]. Available: http://arxiv.org/abs/1704.03177. [63] V. J. López-Madrona, F. S. Matias, C. R. Mirasso, S. Canals, and E. Pereda, “Inferring correlations associated to causal interactions in brain signals using autoregressive models,” Scientific Reports, vol. 9, no. 1, Art. no. 1, Nov. 2019, doi: 10.1038/s41598-019-53453-2. [64] R. R. Johnson, D. P. Popovic, R. E. Olmstead, M. Stikic, D. J. Levendowski, and C. Berka, “Drowsiness/alertness algorithm development and validation using synchronized EEG and cognitive performance to individualize a generalized model,” Biological Psychology, vol. 87, no. 2, pp. 241–250, May 2011, doi: 10.1016/j.biopsycho.2011.03.003. [65] A. Haar, “Zur Theorie der orthogonalen Funktionensysteme,” Math. Ann., vol. 69, no. 3, pp. 331–371, Sep. 1910, doi: 10.1007/BF01456326. [66] C. K. Chui, Ed., “3 - Wavelet Transforms and Time-Frequency Analysis,” in Wavelet Analysis and Its Applications, vol. 1, Academic Press, 1992, pp. 49–80. [67] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding using vector quantization in the wavelet transform domain,” in International Conference on Acoustics, Speech, and Signal Processing, Apr. 1990, pp. 2297–2300 vol.4, doi: 10.1109/ICASSP.1990.116036. [68] J. Morlet, G. Arens, E. Fourgeau, and D. Giard, “Wave propagation and sampling theory—Part II: Sampling theory and complex waves,” GEOPHYSICS, vol. 47, no. 2, pp. 222–236, Feb. 1982, doi: 10.1190/1.1441329. [69] D. Gabor, “Theory of communication. Part 1: The analysis of information,” Journal of the Institution of Electrical Engineers - Part III: Radio and Communication Engineering, vol. 93, no. 26, pp. 429–441, Nov. 1946, doi: 10.1049/ji-3-2.1946.0074. 53 [70] Facebook and Twitter, “The 4 Stages of Sleep (NREM and REM Sleep Cycles),” Verywell Health. https://www.verywellhealth.com/the-four-stages-of-sleep-2795920 (accessed Mar. 19, 2021). [71] J. E. Brinkman, V. Reddy, and S. Sharma, “Physiology, Sleep,” in StatPearls, Treasure Island (FL): StatPearls Publishing, 2021. [72] “Stages of Sleep | Introduction to Psychology.” https://courses.lumenlearning.com/wsu-sandbox/chapter/stages-of-sleep/ (accessed Mar. 20, 2021). [73] L. Creti, E. Libman, M. Baltzan, D. Rizzo, S. Bailes, and C. S. Fichten, “Impaired Sleep in Chronic Fatigue Syndrome: How Is It Best Measured?,” J Health Psychol, vol. 15, no. 4, pp. 596–607, May 2010, doi: 10.1177/1359105309355336. | en_US |
dc.identifier.uri | http://hdl.handle.net/123456789/1369 | |
dc.description | Supervised by Prof. Dr. Md. Ruhul Amin, Head, Department of Electrical and Electronic Engineering Islamic University of Technology (IUT), ,Boardbazar, Gazipur-1704.Bangladesh | en_US |
dc.description.abstract | The classic, easier, and the most practiced way of comprehending the functionalities of the Human Brain is collecting Encephalic Potential Difference – technically known as EEG. As Neuroscience Researchers worldwide are using the time series data of Brain Wave voltage into analyzing, building, and featuring Human Behavioral Traits, Motor Functionalities, Cognitive Cerebral Activities, and BCI, the focus has been shifted on the consciousness factors of the Human Psyche. Meanwhile, the subdued consciousness studies remain highly unattended and untouched. So, with an aspiration to exploit Biomedical Signal Processing into the unknown arena of Unconsciousness, the team has chosen to dig into the features of Impaired Consciousness i.e. Anesthesia and Comatose Patients. The work focuses on the comparative analysis of different consciousness levels along with cerebral signatures with the help of EEG signals. By deploying the known set of parameters for consciousness, the research looks forward to quantifying the EEG data acquired from the patients in Coma and identify the existing rhythms thereafter. With continual progress, the study shed light on the previously unknown Cerebral facts of the patients with subdued consciousness. As the features, identifiers, and parameters are superposed to depict the outcome, the study yielded a new finding – termed Failure Harmonics which deliberately exposes the failure in the transition from one level of consciousness to the other – marking one of the potential reasons for traumatic long-term Unconsciousness. The whole set of findings and extractions will not only usher new comprehensive perceptions of Coma as an addition to neuroscience but also help diagnosing the patients of impaired consciousness to a hopeful recovery. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Department of Electrical and Electronic Engineering, Islamic University of Technology (IUT), Board Bazar, Gazipur-1704, Bangladesh | en_US |
dc.title | Quantifying the Locomotive Features in EEG of Impaired Consciousness and Coma with Distinctive Cerebral Rhythms | en_US |
dc.type | Thesis | en_US |