dc.identifier.citation |
[1] N. S. Lewis. “Powering the planet”. MRS Bulletin, 2007. [2] A. Luque and S. Hegedus. “Handbook of Photovoltaic Science and Engineering”. John Wiley & Sons, England, 2003. [3] M. A. Green. “Third generation photovoltaics: solar cells for 2020 and beyond”. Physica E-Low-Dimensional Systems & Nanostructures, 14(1-2):65{70, 2002. [4] A. Romeo, A. Terheggen, D. Abou-Ras, D. L. Batzner, F. J. Haug, M. Kalin, D. Rudmann, and A. N. Tiwari. “Development of thin-film Cu(In,Ga)Se-2 and CdTe solar cells”. Progress in Photovoltaics, 12(2-3):93-111, 2004. [5] M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon, and R. Nou. “Progress toward 20% efficiency in Cu (In,Ca)Se-2 polycrystalline thin-film solar cells”. Progress in Photovoltaics, 7(4):311-316, 1999. [6] G. Mie. “Beitrage zur optik truber medien, speziell kolloidaler metal osungen. Annalen Der Physik”, 25(3):377{445, 1908. [7] R. H. Ritchie. “Plasma losses by fast electrons in thin films”. Physical Review, 106, 1957. [8] A. Otto. “Exictation of Nonradiative Surface Plasma Waves in Silver by Method of Frustrated Total Reection”. Zeitschrift fur Physik, 216(4):398 &, 1968. [9] E. Kretschmann and H. Raether. “Radiative decay of non-radiative surface plasmons excited by light”. Zeitschrift fur Naturforschung, 23A, 1968. [10] D. L. Jeanmaire and R. P. Van Duyne. “Surface raman spectroelectrochemistry: Part i. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode”. Journal of Electroanalytical Chemistry, 84:1{20, 1977. [11] K. A. Willets and R. P. Van Duyne. “Localized surface plasmon resonance spectroscopy and sensing”. Annual Review of Physical Chemistry, 58:267{297, 2007. [12] A. Polman. “Applied Physics Plasmonics Applied. Science”, 322(5903):868{869, 2008. [13] J. Mertz. “Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: a unfied description”. Journal of the Optical Society of America B-Optical Physics, 17(11):1906{1913, 2000. [14] J. B. Pendry. “Negative refraction makes a perfect lens”. Physical Review Letters, 85(18):3966-3969, 2000. [15] R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman. “A silicon-based electrical source of surface plasmon polaritons”. Nature Materials, 9(1):21-25, 2010. [16] R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang. “Plasmon lasers at deep subwavelength scale”. Nature, 461 (7264):629{632, 2009. [17] M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit. “Lasing in metallic- Coated nanocavities”. Nature Photonics, 1(10):589-594, 2007. [18] S. Lal, S. E. Clare, and N. J. Halas. “Nanoshell-Enabled Photothermal Cancer Therapy: Impending Clinical Impact”. Accounts of Chemical Research, 41(12, Sp. Iss. SI) :1842-1851, 2008. [19] S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green. “Surface plasmon enhanced silicon solar cells”. Journal of Applied Physics, 101(9), 2007. [20] D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu. “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles”. Applied Physics Letters, 89(9), 2006. [21] K. Nakayama, K. Tanabe, and H. A. Atwater. “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells”. Applied Physics Letters, 93(12), 2008. [22] R. B. Konda, R. Mundle, H. Mustafa, O. Bamiduro, A. K. Pradhana, U. N. Roy, Y. Cui, and A. Burger. “Surface plasmon excitation via Au nanoparticles in n-CdSe/p-Si heterojunction diodes”. Applied Physics Letters, 91(19), 2007. [23] I. M. Pryce, D. D. Koleske, A. J. Fischer, and H. A. Atwater. “Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells”. Applied Physics Letters, 96(15), 2010. [24] D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu. “Nanoparticle-induced light scattering for improved performance of quantumwell solar cells”. Applied Physics Letters, 93(9), 2008. 54 [25] A. J. Morfa, K. L. Rowlen, T. H. Reilly, III, M. J. Romero, and J. van de Lagemaat. “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics”. Applied Physics Letters, 92(1), 2008. [26] M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner. “Metal cluster enhanced organic solar cells”. Solar Energy Materials and Solar Cells, 61 (1):97-105, 2000. [27] C. Wen, K. Ishikawa, M. Kishima, and K. Yamada. “Effects of silver particles on the photovoltaic properties of dye-sensitized TiO2 thin films”. Solar Energy Materials and Solar Cells, 61(4):339-351, 2000. [28] Tanabe, K. (2009). "A Review of Ultrahigh Efficiency III-V Semiconductor Compound Solar Cells: Multijunction Tandem, Lower Dimensional, Photonic Up/Down Conversion and Plasmonic Nanometallic Structures". [29] P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman. “Optical impedance matching using coupled plasmonic nanoparticle arrays”. Nano Letters, 11(4):1760-1765, 2011. [30] J. N. Munday and H. A. Atwater. “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireection coatings”. Nano Letters, 2011. [31] Ferry, Vivian E.; Sweatlock, Luke A.; Pacifici, Domenico; Atwater, Harry A. (2008). "Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells". Nano Letters. [32] Vincenzo Giannini, Antonio I. Fernandez-Domínguez, Susannah C. Heck, and Stefan A. Maier. “Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters” .2010 [33] A. Garc´ıa-Etxarri, R. G´omez-Medina, L. S. Froufe-P´erez, C. L´opez,2 L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. S´aenz, “Strong magnetic response of submicron Silicon particles in the infrared” .2010 [34] P. Colomban, G. March, L. Mazerolles, T. Karmous, N. Ayed, A. Ennabli, and H. Slim. “Raman identification of materials used for jewellery and mosaics”. J. Raman Spectrosc., 34:205, 2003. [35] Katja Ehrhold, Silke Christiansen, and Ulrich Gosele. “Plasmonic Properties of Bimetal Nanoshell Cylinders and Spheres” 2009 [36] Y. Ekinci, H. H. Solak, and J. F. Löffler “Plasmon resonances of aluminum nanoparticles” [37] T. Repäna, S. Pikkera, L. Dolgova, A. Loota, J. Hiieb, M. Krunksb, I. Sildosa. “Increased efficiency inside the CdTe solar cell absorber caused by plasmonic metal nanoparticles”. 2008 [38] N. P. Hylton, X. F. Li, V. Giannini, K. H. Lee, N. J. Ekins-Daukes, J. Loo, D. Vercruysse, P. Van Dorpe, H. Sodabanlu5, M. Sugiyama & S. A. Maier. “Loss mitigation in plasmonic solar cells aluminium nanoparticles for broadband photocurrent enhancements in GaAs photodiodes”. 2009 [39] Qian Zhou, Debao Jiao, Kailiang Fu, Xiaojie Wua, Yongsheng Chen a, Jingxiao Lu a, Shi-e Yang. “Two-dimensional device modeling of CH3NH3PbI3 based planar heterojunction perovskite solar cells” 2009. [40] Wei Zhang, Michael Saliba, Samuel D. Stranks, Yao Sun, Xian Shi,‡ Ulrich Wiesner, and Henry J. Snaith. “Enhancement of Perovskite-Based Solar Cells Employing Core−Shell Metal Nanoparticles”. [41] I. Nakai, C. Numako, H. Hosono, and K. Yamasaki. “Origin of the red color of Satsuma copper-ruby glass as determined by EXAFS and optical absorption spectroscopy”. J. Am. Ceram. Soc., 82:689, 1999. [42] P. Colomban. “The use of metal nanoparticles to produce yellow, red and iridescent colour, from Bronze Age to present times in lustre pottery and glass: Solid state chemistry, spectroscopy and nanostructure”. J. Nano Res., 8:109, 2009. [43] F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S.Wackerow, H. Graener, G. v. Plessen, and F. Lederer. “On the use of localized plasmon polaritons in solar cells”. Phys. Status Solidi A, 205:2844, 2008. [44] P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman. “Plasmonic light trapping in thin-film Si solar cells”. J. Opt., 14:024002, 2012. [45] S. B. Mallick, N. P. Sergeant, M. Agrawal, J.-Y. Lee, and P. Peumans. “Coherent light trapping in thin-film photovoltaics”. MRS Bulletin, 36:453, 2011. [46] S. A. Choulis, M. K. Mathai, and V.-E. Choong. “Influence of metallic nanoparticles on the performance of organic electrophosphorescence devices”. Appl. Phys. Lett., 88:213503, 2006. [47] A. Fujiki, T. Uemura, N. Zettsu, M. Akai-Kasaya, A. Saito, and Y. Kuwahara. “Enhanced fluorescence by surface plasmon coupling of au nanoparticles in an organic electroluminescence diode”. Appl. Phys. Lett., 96:043307, 2010. [48] C. Huh, C.-J. Choi, W. Kim, B. K. Kim, B.-J. Park, E.-H. Jang, S.-H. Kim, and G. Y. Sung. “Enhancement in light emission efficiency of Si nanocrystal light-emitting diodes by a surface plasmon coupling”. Appl. Phys. Lett., 100:181108, 2012. [49] K. M. Mayer and J. H. Hafner. “Localized surface plasmon resonance sensors”. Chem. Rev., 111:3828, 2011. [50] H. Haick. “Chemical sensors based on molecularly modified metallic nanoparticles”. J. Phys. D: Appl. Phys., 40:7173, 2007. [51] M. De, P. S. Ghosh, and V. M. Rotello. “Applications of nanoparticles in biology”. Adv. Mater., 20:4225, 2008. 55 [52] S. Schlücker. ‘SERS microscopy: nanoparticle probes and biomedical applications”. ChemPhysChem, 10:1344, 2009. [53] X. X. Han, B. Zhao, and Y. Ozaki. “Surface-enhanced Raman scattering for protein detection”. Anal. Bioanal. Chem., 394:1719, 2009. [54] K. Mori, M. Kawashima, M. Che, and H. Yamashita. “Enhancement of the photoinduced oxidation activity of a ruthenium (ii) complex anchored on silica-coated silver nanoparticles by localized surface plasmon resonance”. Angew. Chem. Int. Ed. Engl., 49:8598, 2010. [55] S. Kéna-Cohen, A. Wiener, Y. Sivan, P. N. Stavrinou, D. D. C. Bradley, A. Horsfield, and S. A. Maier. “Plasmonic sinks for the selective removal of long-lived states”. ACS Nano, 5:9958, 2011. [56] Bjoern NIESEN. “Performance improvement of organic solar cells by metallic nanoparticles”. 2011 [57] M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner. “Demonstration of a spaser-based nanolaser”. Nature, 460:1110, 2009. [58] E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso. “Plasmonic laser antenna”. Appl. Phys. Lett., 89:093120, 2006. [59] S. A. Maier. “Plasmonics: fundamentals and applications”. Springer Science+Business Media, New York, 2007. [60] U. Kreibig and M. Vollmer. “Optical properties of metal clusters”. Springer: Berlin, 1995. [61] M. A. Garcia. “Surface plasmons in metallic nanoparticles: fundamentals and applications”. J. Phys. D: Appl. Phys., 44:283001, 2011. [62] P. Zijlstra and M. Orrit. “Single metal nanoparticles: optical detection, spectroscopy and applications”. Rep. Prog. Phys., 74:106401, 2011. [63] V. Giannini, A. I. Fernandez-Dominguez, S. C. Heck, and S. A. Maier. “Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters”. Chem. Rev., 111:3888, 2011. [64] A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin. “Nano-optics of surface plasmon polaritons”. Phys. Rep., 408:131, 2005. [65] J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique. “Theory of surface plasmons and surface-plasmon polaritons”. Rep. Prog. Phys., 70:1, 2007. [66] A. V. Zayats and I. I. Smolyaninov. “Near-field photonics: surface plasmon polaritons and localized surface plasmons”. J. Opt. A: Pure Appl. Opt., 5:S16, 2003. [67] J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll. “Optical spectroscopy of nanometric holes in thin gold films”. Nano Lett., 4:1003, 2004. [68] J. Parsons, E. Hendry, C. P. Burrows, B. Auguie, J. R. Sambles, and W. L. Barnes.” Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays”. Phys. Rev. B, 79:073412, 2009. [69] A. I. Henry, J. M. Bingham, E. Ringe, L. D. Marks, G. C. Schatz, and R. P. Van Duyne. “Correlated structure and optical property studies of plasmonic nanoparticles’. J. Phys. Chem. C, 115:9291, 2011. [70] M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia. “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications”. Chem. Rev., 111:3669, 2011. [71] A. Tcherniak, J. W. Ha, S. Dominguez-Medina, L. S. Slaughter, and S. Link. “Probing a century old prediction one plasmonic particle at a time”. Nano Lett., 10:1398, 2010. [72] C. Noguez. “Surface plasmons on metal nanoparticles: The influence of shape and physical environment”. J. Phys. Chem. C, 111:3806, 2007. [73] P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed. “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine”. J. Phys. Chem. B, 110:7238, 2006. [74] O. Muskens, P. Billaud, M. Broyer, N. Del Fatti, and F. Vallée. “Optical extinction spectrum of a single metal nanoparticle: Quantitative characterization of a particle and of its local environment”. Phys. Rev. B, 78:205410, 2008. [75] M. M. Miller and A. A. Lazarides. “Sensitivity of metal nanoparticle plasmon resonance band position to the dielectric environment as observed in scattering”. J. Opt. A-Pure Appl. Opt., 8:S239, 2006. [76] M. Meier and A. Wokaun. “Enhanced fields on large metal particles: dynamic depolarization”. Opt. Lett., 8:581, 1983. [77] C. F. Bohren and D. R. Huffman. “Absorption and scattering of light by small particles”. Wiley Interscience: New York, 1983. [78] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz. “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment”. J. Phys. Chem. B, 107:668, 2003. [79] H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano. “Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation”. Appl. Phys. Lett., 83:4625, 2003. 56 [80] T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann. “Properties and applications of colloidal nonspherical noble metal nanoparticles”. Adv. Mater., 22:1805, 2010. [81] J. Ye, P. Van Dorpe, W. Van Roy, K. Lodewijks, I. De Vlaminck, G. Maes, and G. Borghs. “Fabrication and optical properties of gold semishells”. J. Phys. Chem. C, 113:3110, 2009. [82] U. Kreibig and M. Vollmer. “Optical properties of metal clusters”. Springer: Berlin, 1995. [83] K. Tanabe. “Field enhancement around metal nanoparticles and nanoshells: A systematic investigation”. J. Phys. Chem. C, 112:15721, 2008. [84] B. P. Rand, P. Peumans, and S. R. Forrest. “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters”. J. Appl. Phys., 96:7519, 2004. [85] A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger. “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms”. Nano Lett., 10:1501, 2010. [86] H. Shen, P. Bienstman, and B. Maes. “Plasmonic absorption enhancement in organic solar cells with thin active layers”. J. Appl. Phys., 106:073109, 2009. [87] J. B. Khurgin and G. Sun. “Enhancement of optical properties of nanoscaled objects by metal nanoparticles”. J. Opt. Soc. Am. B, 26:B83, 2009. [88] R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas. “Fluorescence enhancement by au nanostructures: nanoshells and nanorods”. ACS Nano, 3:744, 2009. [89] A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner. “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna”. Nature Photon, 3:654, 2009. [90] M. H. Chowdhury, S. Chakraborty, J. R. Lakowicz, and K. Ray. “Feasibility of using bimetallic plasmonic nanostructures to enhance the intrinsic emission of biomolecules”. J. Phys. Chem. C, 115:16879, 2011. [91] [86] T. Härtling, P. Reichenbach, and L. M. Eng. “Near-field coupling of a single fluorescent molecule and a spherical gold nanoparticle”. Opt. Express, 15:12806, 2007. [92] J. Kim, G. Dantelle, A. Revaux, M. Berard, A. Huignard, T. Gacoin, and J.-P. Boilot. “Plasmon-induced modification of fluorescent thin film emission nearby gold nanoparticle monolayers”. Langmuir, 26:8842, 2010. [93] S. Pan and L. J. Rothberg. “Enhancement of platinum octaethyl porphyrin phosphorescence near nanotextured silver surfaces”. J. Am. Chem. Soc., 127:6087, 2005. [94] E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. Munoz Javier, and W. J. Parak. “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression”. Nano Lett., 5:585, 2005. [95] R. Chhabra, J. Sharma, H. Wang, S. Zou, S. Lin, H. Yan, S. Lindsay, and Y. Liu. “Distance-dependent interactions between gold nanoparticles and fluorescent molecules with dna as tunable spacers”. Nanotechnology, 20:485201, 2009. [96] G. Schneider, G. Decher, N. Nerambourg, R. Praho, M. H. V. Werts, and M. Blanchard-Desce. “Distance-dependent fluorescence quenching on gold nanoparticles ensheathed with layer-by-layer assembled polyelectrolytes”. Nano Lett., 6:530, 2006. [97] S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar. “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna”. Phys. Rev. Lett., 97:017402, 2006. [98] K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. Jen-La Plante, A. M. Munro, and D. S. Ginger. “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms”. Nano Lett., 10:2598, 2010. [99] F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas. “Plasmonic enhancement of molecular fluorescence”. Nano Lett., 7:496, 2007. [100] P. Bharadwaj and L. Novotny. “Spectral dependence of single molecule fluorescence enhancement”. Opt. Express, 15:14266, 2007. [101] Y. Chen, K. Munechika, and D. S. Ginger. “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles”. Nano Lett., 7:690, 2007. [102] Y. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. Xia, and D. S. Ginger. Excitation enhancement of CdSe quantum dots by single metal nanoparticles. Appl. Phys. Lett., 93:053106, 2008. [103] V. Giannini, A. I. Fernandez-Dominguez, S. C. Heck, and S. A. Maier. “Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters”. Chem. Rev., 111:3888, 2011. [104] J. B. Khurgin and G. Sun. “Enhancement of optical properties of nanoscaled objects by metal nanoparticles”. J. Opt. Soc. Am. B, 26:B83, 2009. [105] Y. Cheng, T. Stakenborg, P. Van Dorpe, L. Lagae, M. Wang, H. Chen, and G. Borghs. “Fluorescence near gold nanoparticles for DNA sensing”. Anal. Chem., 83:1307, 2011. [106] E. Fort and S. Gresillon. “Surface enhanced fluorescence”. J. Phys. D: Appl. Phys., 41:013001, 2008. 57 [107] M. Thomas, J.-J. Greffet, R. Carminati, and J. R. Arias-Gonzalez. “Singlemolecule spontaneous emission close to absorbing nanostructures”. Appl. Phys. Lett., 85:3863, 2004. [108] O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gomez Rivas. “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas”. Nano Lett., 7:2871, 2007. [109] S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green. “Surface plasmon enhanced silicon solar cells”. Journal of Applied Physics, 101(9), 2007. [110] K. Nakayama, K. Tanabe, and H. A. Atwater. “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells”. Applied Physics Letters, 93(12), 2008. [111] B. P. Rand, P. Peumans, and S. R. Forrest. “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters”. Journal of Applied Physics, 96(12):7519-7526, 2004 [112] P. N. Saeta, V. E. Ferry, D. Pacifici, J. N. Munday, and H. A. Atwater. “How much can guided modes enhance absorption in thin solar cells?” Optics Express, 17(23):20975-20990, 2009. [113] H. R. Stuart and D. G. Hall. “Island size effects in nanoparticle-enhanced photodetectors”. Applied Physics Letters, 73(26):3815-3817, 1998. [114] V. E. Ferry, L. A. Sweatlock, D. Paciffci, and H. A. Atwater. “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells”. Nano Letters, 8 (12):4391-4397, 2008. [115] R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma. “Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements”. Advanced Materials, 21(34):3504+, 2009. [116] K. R. Catchpole and A. Polman. “Design principles for particle plasmon enhanced solar cells”. Applied Physics Letters, 93(19), 2008. [117] H. C. van de Hulst, “Light Scattering by Small Particles” (Dover, 1981). [118] B. T. Draine, “The discrete dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988). [119] S. Albaladejo, R. G´omez-Medina, L. S. Froufe-P´erez, H. Marinchio, R. Carminati, J. F. Torrado, G. Armelles, A. Garc´ıa-Mart´ın, and J. J. S´aenz, “Radiative corrections to the polarizability tensor of an electrically small anisotropic dielectric particle,” Opt. Express 18, 3556–3567 (2010). [120] M. Nieto-Vesperinas, J. J. S´aenz, R. G´omez-Medina, and L. Chantada, “Optical forces on small magnetodielectric magnetic particles,” Opt. Express 18, 11428–11443 (2010). [121] Deckman, H., C. Roxlo, and E. Yablonovitch, “Maximum statistical increase of optical absorption in textured semiconductor films”. Optics letters, 1983. 8(9): p. 491-493. [122] Green, M.A., “Solar cells: operating principles, technology, and system applications”. 1982. [123] Yablonovitch, E. and G.D. Cody, “Intensity enhancement in textured optical sheets for solar cells”. IEEE Transactions on Electron Devices, 1982. 29(2): p. 300-305. [124] Nakayama, K., K. Tanabe, and H.A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells”. Applied Physics Letters, 2008. 93(12): p. 121904. [125] Pillai, S., et al., “Surface plasmon enhanced silicon solar cells”. Journal of applied physics, 2007. 101(9): p. 093105. [126] Rand, B.P., P. Peumans, and S.R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters”. Journal of Applied Physics, 2004. 96(12): p. 7519-7526. [127] Schaadt, D., B. Feng, and E. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles”. Applied Physics Letters, 2005. 86(6): p. 063106. [128] Stuart, H.R. and D.G. Hall, “Absorption enhancement in silicon‐on‐insulator waveguides using metal island films”. Applied Physics Letters, 1996. 69(16): p. 2327-2329. [129] Stuart, H.R. and D.G. Hall, “Island size effects in nanoparticle-enhanced photodetectors”. Applied Physics Letters, 1998. 73(26): p. 3815-3817. [130] Atwater, H.A. and A. Polman, “Plasmonics for improved photovoltaic devices”. Nature materials, 2010. 9(3): p. 205-213. [131] Bohren, C.F. and D.R. Huffman, “Absorption and scattering of light by small particles”. 2008: John Wiley & Sons. [132] Repän, T., et al., “Increased efficiency inside the CdTe solar cell absorber caused by plasmonic metal nanoparticles”. Energy Procedia, 2014. 44: p. 229-233. [133] Rakid, A.D., et al., “Optical properties of metallic films for vertical-cavity optoelectronic devices”. Applied optics, 1998. 37(22): p. 5271-5283. [134] Rakid, A.D., “Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum”. Applied optics, 1995. 34(22): p. 4755-4767. 58 [135] Aspnes, D. and A. Studna, “Dielectric functions and optical parameters of si, ge, gap, gaas, gasb, inp, inas, and insb from 1.5 to 6.0 ev”. Physical Review B, 1983. 27(2): p. 985. [136] E. Palik, “Handbook of Optical Constants of Solids”, Volumes I, II, and III, Academic Press Handbook Series, Elsevier Science & Tech, 1985. [137] A. D. Raki´c, “Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum”, Appl. Opt. 34 (22) (1995) 4755–4767. [138] S. Tutihasi, G. G. Roberts, R. C. Keezer, R. E. Drews, “Optical properties of tellurium in the fundamental absorption region”, Phys. Rev. 177 (1969) 1143–1150. [139] Y. A. Akimov, W. S. Koh, “Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells”. Nanotechnology 21 (23) (2010) 235201. [140] Bailie, C.D., et al., “Semi-transparent perovskite solar cells for tandems with silicon and CIGS”. Energy & Environmental Science, 2015. 8(3): p. 956-963. [141] Boudreault, P.-L.T., A. Najari, and M. Leclerc, “Processable low-bandgap polymers for photovoltaic applications”. Chemistry of Materials, 2010. 23(3): p. 456-469. [142] Kojima, A., et al., “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells”. Journal of the American Chemical Society, 2009. 131(17): p. 6050-6051. [143] Ball, J.M., et al., “Low-temperature processed meso-superstructured to thin-film perovskite solar cells”. Energy & Environmental Science, 2013. 6(6): p. 1739-1743. [144] Eperon, G.E., et al., “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells”. Energy & Environmental Science, 2014. 7(3): p. 982-988. [145] Zhang, W., et al., “Enhancement of perovskite-based solar cells employing core–shell metal nanoparticles”. Nano letters, 2013. 13(9): p. 4505-4510. [146] Standridge, S.D., G.C. Schatz, and J.T. Hupp, “Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells”. Journal of the American Chemical Society, 2009. 131(24): p. 8407-8409. [147] Yang, J., Jingbi You, Chun-Chao Chen, Wan-Ching Hsu, Hai-ren Tan, Xing Wang Zhang, Ziruo Hong, and Yang Yang. “Plasmonic polymer tandem solar cell”. ACS Nano, 2011. 5(8): p. 6210-6217. [148] Catchpole, K. and A. Polman, ‘Plasmonic solar cells”. Optics express, 2008. 16(26): p. 21793-21800. [149] Reineck, P., et al., “A Solid‐State Plasmonic Solar Cell via Metal Nanoparticle Self‐Assembly”. Advanced Materials, 2012. 24(35): p. 4750-4755. [150] Atwater, H.A. and A. Polman, “Plasmonics for improved photovoltaic devices”. Nature materials, 2010. 9(3): p. 205-213. [151] Repän, T., et al., “Increased efficiency inside the CdTe solar cell absorber caused by plasmonic metal nanoparticles”. Energy Procedia, 2014. 44: p. 229-233. [152] Baikie, Baikie, Tom, et al. "Synthesis and crystal chemistry of the hybrid perovskite (CH 3 NH 3) PbI 3 for solid-state sensitised solar cell applications." Journal of Materials Chemistry A 1.18 (2013): 5628-5641. [153] Rakid, A.D., et al., “Optical properties of metallic films for vertical-cavity optoelectronic devices”. Applied optics, 1998. 37(22): p. 5271-5283. [154] Phillips, L.J., et al., “Dispersion relation data for methylammonium lead triiodide perovskite deposited on a (100) silicon wafer using a two-step vapour-phase reaction process”. Data in brief, 2015. 5: p. 926-928. [155] Bohren, C.F. and D.R. Huffman, “Absorption and scattering of light by small particles”. John Wiley & Sons. 2008 |
en_US |