Metal Nanoparticle Induced Enhancement of Light Absorption in Thin-film PV Cells

Show simple item record

dc.contributor.author Ohib, Riyasat
dc.contributor.author Yeasar, Samin
dc.contributor.author Ali, Sayem
dc.date.accessioned 2017-11-03T06:55:02Z
dc.date.available 2017-11-03T06:55:02Z
dc.date.issued 2016-11-20
dc.identifier.citation [1] N. S. Lewis. “Powering the planet”. MRS Bulletin, 2007. [2] A. Luque and S. Hegedus. “Handbook of Photovoltaic Science and Engineering”. John Wiley & Sons, England, 2003. [3] M. A. Green. “Third generation photovoltaics: solar cells for 2020 and beyond”. Physica E-Low-Dimensional Systems & Nanostructures, 14(1-2):65{70, 2002. [4] A. Romeo, A. Terheggen, D. Abou-Ras, D. L. Batzner, F. J. Haug, M. Kalin, D. Rudmann, and A. N. Tiwari. “Development of thin-film Cu(In,Ga)Se-2 and CdTe solar cells”. Progress in Photovoltaics, 12(2-3):93-111, 2004. [5] M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon, and R. Nou. “Progress toward 20% efficiency in Cu (In,Ca)Se-2 polycrystalline thin-film solar cells”. Progress in Photovoltaics, 7(4):311-316, 1999. [6] G. Mie. “Beitrage zur optik truber medien, speziell kolloidaler metal osungen. Annalen Der Physik”, 25(3):377{445, 1908. [7] R. H. Ritchie. “Plasma losses by fast electrons in thin films”. Physical Review, 106, 1957. [8] A. Otto. “Exictation of Nonradiative Surface Plasma Waves in Silver by Method of Frustrated Total Reection”. Zeitschrift fur Physik, 216(4):398 &, 1968. [9] E. Kretschmann and H. Raether. “Radiative decay of non-radiative surface plasmons excited by light”. Zeitschrift fur Naturforschung, 23A, 1968. [10] D. L. Jeanmaire and R. P. Van Duyne. “Surface raman spectroelectrochemistry: Part i. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode”. Journal of Electroanalytical Chemistry, 84:1{20, 1977. [11] K. A. Willets and R. P. Van Duyne. “Localized surface plasmon resonance spectroscopy and sensing”. Annual Review of Physical Chemistry, 58:267{297, 2007. [12] A. Polman. “Applied Physics Plasmonics Applied. Science”, 322(5903):868{869, 2008. [13] J. Mertz. “Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: a unfied description”. Journal of the Optical Society of America B-Optical Physics, 17(11):1906{1913, 2000. [14] J. B. Pendry. “Negative refraction makes a perfect lens”. Physical Review Letters, 85(18):3966-3969, 2000. [15] R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman. “A silicon-based electrical source of surface plasmon polaritons”. Nature Materials, 9(1):21-25, 2010. [16] R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang. “Plasmon lasers at deep subwavelength scale”. Nature, 461 (7264):629{632, 2009. [17] M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit. “Lasing in metallic- Coated nanocavities”. Nature Photonics, 1(10):589-594, 2007. [18] S. Lal, S. E. Clare, and N. J. Halas. “Nanoshell-Enabled Photothermal Cancer Therapy: Impending Clinical Impact”. Accounts of Chemical Research, 41(12, Sp. Iss. SI) :1842-1851, 2008. [19] S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green. “Surface plasmon enhanced silicon solar cells”. Journal of Applied Physics, 101(9), 2007. [20] D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu. “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles”. Applied Physics Letters, 89(9), 2006. [21] K. Nakayama, K. Tanabe, and H. A. Atwater. “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells”. Applied Physics Letters, 93(12), 2008. [22] R. B. Konda, R. Mundle, H. Mustafa, O. Bamiduro, A. K. Pradhana, U. N. Roy, Y. Cui, and A. Burger. “Surface plasmon excitation via Au nanoparticles in n-CdSe/p-Si heterojunction diodes”. Applied Physics Letters, 91(19), 2007. [23] I. M. Pryce, D. D. Koleske, A. J. Fischer, and H. A. Atwater. “Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells”. Applied Physics Letters, 96(15), 2010. [24] D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu. “Nanoparticle-induced light scattering for improved performance of quantumwell solar cells”. Applied Physics Letters, 93(9), 2008. 54 [25] A. J. Morfa, K. L. Rowlen, T. H. Reilly, III, M. J. Romero, and J. van de Lagemaat. “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics”. Applied Physics Letters, 92(1), 2008. [26] M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner. “Metal cluster enhanced organic solar cells”. Solar Energy Materials and Solar Cells, 61 (1):97-105, 2000. [27] C. Wen, K. Ishikawa, M. Kishima, and K. Yamada. “Effects of silver particles on the photovoltaic properties of dye-sensitized TiO2 thin films”. Solar Energy Materials and Solar Cells, 61(4):339-351, 2000. [28] Tanabe, K. (2009). "A Review of Ultrahigh Efficiency III-V Semiconductor Compound Solar Cells: Multijunction Tandem, Lower Dimensional, Photonic Up/Down Conversion and Plasmonic Nanometallic Structures". [29] P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman. “Optical impedance matching using coupled plasmonic nanoparticle arrays”. Nano Letters, 11(4):1760-1765, 2011. [30] J. N. Munday and H. A. Atwater. “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireection coatings”. Nano Letters, 2011. [31] Ferry, Vivian E.; Sweatlock, Luke A.; Pacifici, Domenico; Atwater, Harry A. (2008). "Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells". Nano Letters. [32] Vincenzo Giannini, Antonio I. Fernandez-Domínguez, Susannah C. Heck, and Stefan A. Maier. “Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters” .2010 [33] A. Garc´ıa-Etxarri, R. G´omez-Medina, L. S. Froufe-P´erez, C. L´opez,2 L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. S´aenz, “Strong magnetic response of submicron Silicon particles in the infrared” .2010 [34] P. Colomban, G. March, L. Mazerolles, T. Karmous, N. Ayed, A. Ennabli, and H. Slim. “Raman identification of materials used for jewellery and mosaics”. J. Raman Spectrosc., 34:205, 2003. [35] Katja Ehrhold, Silke Christiansen, and Ulrich Gosele. “Plasmonic Properties of Bimetal Nanoshell Cylinders and Spheres” 2009 [36] Y. Ekinci, H. H. Solak, and J. F. Löffler “Plasmon resonances of aluminum nanoparticles” [37] T. Repäna, S. Pikkera, L. Dolgova, A. Loota, J. Hiieb, M. Krunksb, I. Sildosa. “Increased efficiency inside the CdTe solar cell absorber caused by plasmonic metal nanoparticles”. 2008 [38] N. P. Hylton, X. F. Li, V. Giannini, K. H. Lee, N. J. Ekins-Daukes, J. Loo, D. Vercruysse, P. Van Dorpe, H. Sodabanlu5, M. Sugiyama & S. A. Maier. “Loss mitigation in plasmonic solar cells aluminium nanoparticles for broadband photocurrent enhancements in GaAs photodiodes”. 2009 [39] Qian Zhou, Debao Jiao, Kailiang Fu, Xiaojie Wua, Yongsheng Chen a, Jingxiao Lu a, Shi-e Yang. “Two-dimensional device modeling of CH3NH3PbI3 based planar heterojunction perovskite solar cells” 2009. [40] Wei Zhang, Michael Saliba, Samuel D. Stranks, Yao Sun, Xian Shi,‡ Ulrich Wiesner, and Henry J. Snaith. “Enhancement of Perovskite-Based Solar Cells Employing Core−Shell Metal Nanoparticles”. [41] I. Nakai, C. Numako, H. Hosono, and K. Yamasaki. “Origin of the red color of Satsuma copper-ruby glass as determined by EXAFS and optical absorption spectroscopy”. J. Am. Ceram. Soc., 82:689, 1999. [42] P. Colomban. “The use of metal nanoparticles to produce yellow, red and iridescent colour, from Bronze Age to present times in lustre pottery and glass: Solid state chemistry, spectroscopy and nanostructure”. J. Nano Res., 8:109, 2009. [43] F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S.Wackerow, H. Graener, G. v. Plessen, and F. Lederer. “On the use of localized plasmon polaritons in solar cells”. Phys. Status Solidi A, 205:2844, 2008. [44] P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman. “Plasmonic light trapping in thin-film Si solar cells”. J. Opt., 14:024002, 2012. [45] S. B. Mallick, N. P. Sergeant, M. Agrawal, J.-Y. Lee, and P. Peumans. “Coherent light trapping in thin-film photovoltaics”. MRS Bulletin, 36:453, 2011. [46] S. A. Choulis, M. K. Mathai, and V.-E. Choong. “Influence of metallic nanoparticles on the performance of organic electrophosphorescence devices”. Appl. Phys. Lett., 88:213503, 2006. [47] A. Fujiki, T. Uemura, N. Zettsu, M. Akai-Kasaya, A. Saito, and Y. Kuwahara. “Enhanced fluorescence by surface plasmon coupling of au nanoparticles in an organic electroluminescence diode”. Appl. Phys. Lett., 96:043307, 2010. [48] C. Huh, C.-J. Choi, W. Kim, B. K. Kim, B.-J. Park, E.-H. Jang, S.-H. Kim, and G. Y. Sung. “Enhancement in light emission efficiency of Si nanocrystal light-emitting diodes by a surface plasmon coupling”. Appl. Phys. Lett., 100:181108, 2012. [49] K. M. Mayer and J. H. Hafner. “Localized surface plasmon resonance sensors”. Chem. Rev., 111:3828, 2011. [50] H. Haick. “Chemical sensors based on molecularly modified metallic nanoparticles”. J. Phys. D: Appl. Phys., 40:7173, 2007. [51] M. De, P. S. Ghosh, and V. M. Rotello. “Applications of nanoparticles in biology”. Adv. Mater., 20:4225, 2008. 55 [52] S. Schlücker. ‘SERS microscopy: nanoparticle probes and biomedical applications”. ChemPhysChem, 10:1344, 2009. [53] X. X. Han, B. Zhao, and Y. Ozaki. “Surface-enhanced Raman scattering for protein detection”. Anal. Bioanal. Chem., 394:1719, 2009. [54] K. Mori, M. Kawashima, M. Che, and H. Yamashita. “Enhancement of the photoinduced oxidation activity of a ruthenium (ii) complex anchored on silica-coated silver nanoparticles by localized surface plasmon resonance”. Angew. Chem. Int. Ed. Engl., 49:8598, 2010. [55] S. Kéna-Cohen, A. Wiener, Y. Sivan, P. N. Stavrinou, D. D. C. Bradley, A. Horsfield, and S. A. Maier. “Plasmonic sinks for the selective removal of long-lived states”. ACS Nano, 5:9958, 2011. [56] Bjoern NIESEN. “Performance improvement of organic solar cells by metallic nanoparticles”. 2011 [57] M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner. “Demonstration of a spaser-based nanolaser”. Nature, 460:1110, 2009. [58] E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso. “Plasmonic laser antenna”. Appl. Phys. Lett., 89:093120, 2006. [59] S. A. Maier. “Plasmonics: fundamentals and applications”. Springer Science+Business Media, New York, 2007. [60] U. Kreibig and M. Vollmer. “Optical properties of metal clusters”. Springer: Berlin, 1995. [61] M. A. Garcia. “Surface plasmons in metallic nanoparticles: fundamentals and applications”. J. Phys. D: Appl. Phys., 44:283001, 2011. [62] P. Zijlstra and M. Orrit. “Single metal nanoparticles: optical detection, spectroscopy and applications”. Rep. Prog. Phys., 74:106401, 2011. [63] V. Giannini, A. I. Fernandez-Dominguez, S. C. Heck, and S. A. Maier. “Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters”. Chem. Rev., 111:3888, 2011. [64] A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin. “Nano-optics of surface plasmon polaritons”. Phys. Rep., 408:131, 2005. [65] J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique. “Theory of surface plasmons and surface-plasmon polaritons”. Rep. Prog. Phys., 70:1, 2007. [66] A. V. Zayats and I. I. Smolyaninov. “Near-field photonics: surface plasmon polaritons and localized surface plasmons”. J. Opt. A: Pure Appl. Opt., 5:S16, 2003. [67] J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll. “Optical spectroscopy of nanometric holes in thin gold films”. Nano Lett., 4:1003, 2004. [68] J. Parsons, E. Hendry, C. P. Burrows, B. Auguie, J. R. Sambles, and W. L. Barnes.” Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays”. Phys. Rev. B, 79:073412, 2009. [69] A. I. Henry, J. M. Bingham, E. Ringe, L. D. Marks, G. C. Schatz, and R. P. Van Duyne. “Correlated structure and optical property studies of plasmonic nanoparticles’. J. Phys. Chem. C, 115:9291, 2011. [70] M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia. “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications”. Chem. Rev., 111:3669, 2011. [71] A. Tcherniak, J. W. Ha, S. Dominguez-Medina, L. S. Slaughter, and S. Link. “Probing a century old prediction one plasmonic particle at a time”. Nano Lett., 10:1398, 2010. [72] C. Noguez. “Surface plasmons on metal nanoparticles: The influence of shape and physical environment”. J. Phys. Chem. C, 111:3806, 2007. [73] P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed. “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine”. J. Phys. Chem. B, 110:7238, 2006. [74] O. Muskens, P. Billaud, M. Broyer, N. Del Fatti, and F. Vallée. “Optical extinction spectrum of a single metal nanoparticle: Quantitative characterization of a particle and of its local environment”. Phys. Rev. B, 78:205410, 2008. [75] M. M. Miller and A. A. Lazarides. “Sensitivity of metal nanoparticle plasmon resonance band position to the dielectric environment as observed in scattering”. J. Opt. A-Pure Appl. Opt., 8:S239, 2006. [76] M. Meier and A. Wokaun. “Enhanced fields on large metal particles: dynamic depolarization”. Opt. Lett., 8:581, 1983. [77] C. F. Bohren and D. R. Huffman. “Absorption and scattering of light by small particles”. Wiley Interscience: New York, 1983. [78] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz. “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment”. J. Phys. Chem. B, 107:668, 2003. [79] H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano. “Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation”. Appl. Phys. Lett., 83:4625, 2003. 56 [80] T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann. “Properties and applications of colloidal nonspherical noble metal nanoparticles”. Adv. Mater., 22:1805, 2010. [81] J. Ye, P. Van Dorpe, W. Van Roy, K. Lodewijks, I. De Vlaminck, G. Maes, and G. Borghs. “Fabrication and optical properties of gold semishells”. J. Phys. Chem. C, 113:3110, 2009. [82] U. Kreibig and M. Vollmer. “Optical properties of metal clusters”. Springer: Berlin, 1995. [83] K. Tanabe. “Field enhancement around metal nanoparticles and nanoshells: A systematic investigation”. J. Phys. Chem. C, 112:15721, 2008. [84] B. P. Rand, P. Peumans, and S. R. Forrest. “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters”. J. Appl. Phys., 96:7519, 2004. [85] A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger. “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms”. Nano Lett., 10:1501, 2010. [86] H. Shen, P. Bienstman, and B. Maes. “Plasmonic absorption enhancement in organic solar cells with thin active layers”. J. Appl. Phys., 106:073109, 2009. [87] J. B. Khurgin and G. Sun. “Enhancement of optical properties of nanoscaled objects by metal nanoparticles”. J. Opt. Soc. Am. B, 26:B83, 2009. [88] R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas. “Fluorescence enhancement by au nanostructures: nanoshells and nanorods”. ACS Nano, 3:744, 2009. [89] A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner. “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna”. Nature Photon, 3:654, 2009. [90] M. H. Chowdhury, S. Chakraborty, J. R. Lakowicz, and K. Ray. “Feasibility of using bimetallic plasmonic nanostructures to enhance the intrinsic emission of biomolecules”. J. Phys. Chem. C, 115:16879, 2011. [91] [86] T. Härtling, P. Reichenbach, and L. M. Eng. “Near-field coupling of a single fluorescent molecule and a spherical gold nanoparticle”. Opt. Express, 15:12806, 2007. [92] J. Kim, G. Dantelle, A. Revaux, M. Berard, A. Huignard, T. Gacoin, and J.-P. Boilot. “Plasmon-induced modification of fluorescent thin film emission nearby gold nanoparticle monolayers”. Langmuir, 26:8842, 2010. [93] S. Pan and L. J. Rothberg. “Enhancement of platinum octaethyl porphyrin phosphorescence near nanotextured silver surfaces”. J. Am. Chem. Soc., 127:6087, 2005. [94] E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. Munoz Javier, and W. J. Parak. “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression”. Nano Lett., 5:585, 2005. [95] R. Chhabra, J. Sharma, H. Wang, S. Zou, S. Lin, H. Yan, S. Lindsay, and Y. Liu. “Distance-dependent interactions between gold nanoparticles and fluorescent molecules with dna as tunable spacers”. Nanotechnology, 20:485201, 2009. [96] G. Schneider, G. Decher, N. Nerambourg, R. Praho, M. H. V. Werts, and M. Blanchard-Desce. “Distance-dependent fluorescence quenching on gold nanoparticles ensheathed with layer-by-layer assembled polyelectrolytes”. Nano Lett., 6:530, 2006. [97] S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar. “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna”. Phys. Rev. Lett., 97:017402, 2006. [98] K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. Jen-La Plante, A. M. Munro, and D. S. Ginger. “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms”. Nano Lett., 10:2598, 2010. [99] F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas. “Plasmonic enhancement of molecular fluorescence”. Nano Lett., 7:496, 2007. [100] P. Bharadwaj and L. Novotny. “Spectral dependence of single molecule fluorescence enhancement”. Opt. Express, 15:14266, 2007. [101] Y. Chen, K. Munechika, and D. S. Ginger. “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles”. Nano Lett., 7:690, 2007. [102] Y. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. Xia, and D. S. Ginger. Excitation enhancement of CdSe quantum dots by single metal nanoparticles. Appl. Phys. Lett., 93:053106, 2008. [103] V. Giannini, A. I. Fernandez-Dominguez, S. C. Heck, and S. A. Maier. “Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters”. Chem. Rev., 111:3888, 2011. [104] J. B. Khurgin and G. Sun. “Enhancement of optical properties of nanoscaled objects by metal nanoparticles”. J. Opt. Soc. Am. B, 26:B83, 2009. [105] Y. Cheng, T. Stakenborg, P. Van Dorpe, L. Lagae, M. Wang, H. Chen, and G. Borghs. “Fluorescence near gold nanoparticles for DNA sensing”. Anal. Chem., 83:1307, 2011. [106] E. Fort and S. Gresillon. “Surface enhanced fluorescence”. J. Phys. D: Appl. Phys., 41:013001, 2008. 57 [107] M. Thomas, J.-J. Greffet, R. Carminati, and J. R. Arias-Gonzalez. “Singlemolecule spontaneous emission close to absorbing nanostructures”. Appl. Phys. Lett., 85:3863, 2004. [108] O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gomez Rivas. “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas”. Nano Lett., 7:2871, 2007. [109] S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green. “Surface plasmon enhanced silicon solar cells”. Journal of Applied Physics, 101(9), 2007. [110] K. Nakayama, K. Tanabe, and H. A. Atwater. “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells”. Applied Physics Letters, 93(12), 2008. [111] B. P. Rand, P. Peumans, and S. R. Forrest. “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters”. Journal of Applied Physics, 96(12):7519-7526, 2004 [112] P. N. Saeta, V. E. Ferry, D. Pacifici, J. N. Munday, and H. A. Atwater. “How much can guided modes enhance absorption in thin solar cells?” Optics Express, 17(23):20975-20990, 2009. [113] H. R. Stuart and D. G. Hall. “Island size effects in nanoparticle-enhanced photodetectors”. Applied Physics Letters, 73(26):3815-3817, 1998. [114] V. E. Ferry, L. A. Sweatlock, D. Paciffci, and H. A. Atwater. “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells”. Nano Letters, 8 (12):4391-4397, 2008. [115] R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma. “Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements”. Advanced Materials, 21(34):3504+, 2009. [116] K. R. Catchpole and A. Polman. “Design principles for particle plasmon enhanced solar cells”. Applied Physics Letters, 93(19), 2008. [117] H. C. van de Hulst, “Light Scattering by Small Particles” (Dover, 1981). [118] B. T. Draine, “The discrete dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988). [119] S. Albaladejo, R. G´omez-Medina, L. S. Froufe-P´erez, H. Marinchio, R. Carminati, J. F. Torrado, G. Armelles, A. Garc´ıa-Mart´ın, and J. J. S´aenz, “Radiative corrections to the polarizability tensor of an electrically small anisotropic dielectric particle,” Opt. Express 18, 3556–3567 (2010). [120] M. Nieto-Vesperinas, J. J. S´aenz, R. G´omez-Medina, and L. Chantada, “Optical forces on small magnetodielectric magnetic particles,” Opt. Express 18, 11428–11443 (2010). [121] Deckman, H., C. Roxlo, and E. Yablonovitch, “Maximum statistical increase of optical absorption in textured semiconductor films”. Optics letters, 1983. 8(9): p. 491-493. [122] Green, M.A., “Solar cells: operating principles, technology, and system applications”. 1982. [123] Yablonovitch, E. and G.D. Cody, “Intensity enhancement in textured optical sheets for solar cells”. IEEE Transactions on Electron Devices, 1982. 29(2): p. 300-305. [124] Nakayama, K., K. Tanabe, and H.A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells”. Applied Physics Letters, 2008. 93(12): p. 121904. [125] Pillai, S., et al., “Surface plasmon enhanced silicon solar cells”. Journal of applied physics, 2007. 101(9): p. 093105. [126] Rand, B.P., P. Peumans, and S.R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters”. Journal of Applied Physics, 2004. 96(12): p. 7519-7526. [127] Schaadt, D., B. Feng, and E. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles”. Applied Physics Letters, 2005. 86(6): p. 063106. [128] Stuart, H.R. and D.G. Hall, “Absorption enhancement in silicon‐on‐insulator waveguides using metal island films”. Applied Physics Letters, 1996. 69(16): p. 2327-2329. [129] Stuart, H.R. and D.G. Hall, “Island size effects in nanoparticle-enhanced photodetectors”. Applied Physics Letters, 1998. 73(26): p. 3815-3817. [130] Atwater, H.A. and A. Polman, “Plasmonics for improved photovoltaic devices”. Nature materials, 2010. 9(3): p. 205-213. [131] Bohren, C.F. and D.R. Huffman, “Absorption and scattering of light by small particles”. 2008: John Wiley & Sons. [132] Repän, T., et al., “Increased efficiency inside the CdTe solar cell absorber caused by plasmonic metal nanoparticles”. Energy Procedia, 2014. 44: p. 229-233. [133] Rakid, A.D., et al., “Optical properties of metallic films for vertical-cavity optoelectronic devices”. Applied optics, 1998. 37(22): p. 5271-5283. [134] Rakid, A.D., “Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum”. Applied optics, 1995. 34(22): p. 4755-4767. 58 [135] Aspnes, D. and A. Studna, “Dielectric functions and optical parameters of si, ge, gap, gaas, gasb, inp, inas, and insb from 1.5 to 6.0 ev”. Physical Review B, 1983. 27(2): p. 985. [136] E. Palik, “Handbook of Optical Constants of Solids”, Volumes I, II, and III, Academic Press Handbook Series, Elsevier Science & Tech, 1985. [137] A. D. Raki´c, “Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum”, Appl. Opt. 34 (22) (1995) 4755–4767. [138] S. Tutihasi, G. G. Roberts, R. C. Keezer, R. E. Drews, “Optical properties of tellurium in the fundamental absorption region”, Phys. Rev. 177 (1969) 1143–1150. [139] Y. A. Akimov, W. S. Koh, “Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells”. Nanotechnology 21 (23) (2010) 235201. [140] Bailie, C.D., et al., “Semi-transparent perovskite solar cells for tandems with silicon and CIGS”. Energy & Environmental Science, 2015. 8(3): p. 956-963. [141] Boudreault, P.-L.T., A. Najari, and M. Leclerc, “Processable low-bandgap polymers for photovoltaic applications”. Chemistry of Materials, 2010. 23(3): p. 456-469. [142] Kojima, A., et al., “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells”. Journal of the American Chemical Society, 2009. 131(17): p. 6050-6051. [143] Ball, J.M., et al., “Low-temperature processed meso-superstructured to thin-film perovskite solar cells”. Energy & Environmental Science, 2013. 6(6): p. 1739-1743. [144] Eperon, G.E., et al., “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells”. Energy & Environmental Science, 2014. 7(3): p. 982-988. [145] Zhang, W., et al., “Enhancement of perovskite-based solar cells employing core–shell metal nanoparticles”. Nano letters, 2013. 13(9): p. 4505-4510. [146] Standridge, S.D., G.C. Schatz, and J.T. Hupp, “Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells”. Journal of the American Chemical Society, 2009. 131(24): p. 8407-8409. [147] Yang, J., Jingbi You, Chun-Chao Chen, Wan-Ching Hsu, Hai-ren Tan, Xing Wang Zhang, Ziruo Hong, and Yang Yang. “Plasmonic polymer tandem solar cell”. ACS Nano, 2011. 5(8): p. 6210-6217. [148] Catchpole, K. and A. Polman, ‘Plasmonic solar cells”. Optics express, 2008. 16(26): p. 21793-21800. [149] Reineck, P., et al., “A Solid‐State Plasmonic Solar Cell via Metal Nanoparticle Self‐Assembly”. Advanced Materials, 2012. 24(35): p. 4750-4755. [150] Atwater, H.A. and A. Polman, “Plasmonics for improved photovoltaic devices”. Nature materials, 2010. 9(3): p. 205-213. [151] Repän, T., et al., “Increased efficiency inside the CdTe solar cell absorber caused by plasmonic metal nanoparticles”. Energy Procedia, 2014. 44: p. 229-233. [152] Baikie, Baikie, Tom, et al. "Synthesis and crystal chemistry of the hybrid perovskite (CH 3 NH 3) PbI 3 for solid-state sensitised solar cell applications." Journal of Materials Chemistry A 1.18 (2013): 5628-5641. [153] Rakid, A.D., et al., “Optical properties of metallic films for vertical-cavity optoelectronic devices”. Applied optics, 1998. 37(22): p. 5271-5283. [154] Phillips, L.J., et al., “Dispersion relation data for methylammonium lead triiodide perovskite deposited on a (100) silicon wafer using a two-step vapour-phase reaction process”. Data in brief, 2015. 5: p. 926-928. [155] Bohren, C.F. and D.R. Huffman, “Absorption and scattering of light by small particles”. John Wiley & Sons. 2008 en_US
dc.identifier.uri http://hdl.handle.net/123456789/136
dc.description Supervised by Dr. Md. Ruhul Amin Professor Department of Electrical and Electronic Engineering, Islamic University of Technology (IUT), Board Bazar, Gazipur-1704 en_US
dc.description.abstract The aim of this thesis is to investigate the utilization of plasmonic metal nanostructures for efficiency enhancement of thin-film solar cells. This efficiency enhancement strategy exploits the strong near-field enhancement and highly efficient light scattering that originates from localized surface plasmon resonances (LSPRs) excited in metal nanostructures and leads to an increased absorption in the solar cell active layer. In the first part of this thesis, the near-field enhancement is explained with rigorous theoretical details and how the electromagnetic characteristics alters significantly if a nanoparticle interacts with an incoming field. We have simulated in COMSOL the incoming electric and magnetic field pattern for a single dielectric particle. We have also shown the far-field radiation pattern and scattering characteristics. We have also demonstrated the enhanced resonant electric field (Hot Spot) and wavelength for peak electric field between 2 nanoparticles in close proximity. Later on, we have constructed models where we chose different metal nanoparticles (Al, Cu, Ag, Au) covered by thin-film absorber layer (GaAs, CdTe). We have measured the enhanced magnitude of absorption and scattering in presence of each of these nanoparticles which boosts the efficiency of an otherwise lacking thin-film absorber without the implementation of nanoparticles. Also we have demonstrated how varying the size of the nanoparticles impacted on the absorption enhancement. We have also delved into the recently emerging organic solar cell technology, very particularly, the Perovskite solar cell. Introducing nanoparticles into the Perovskite absorber layer results in higher absorption and scattering. We have measured the absorption enhancement in presence of different noble metal NPs (Al, Cu, Ag, Au). Also we have demonstrated the effect of the radius of the each of the metal NPs into absorption enhancement. Due to this absorption enhancement, the plasmonic nanostructured cell exhibits an enhanced power conversion efficiency compared to an optimized, high performance organic solar cell en_US
dc.language.iso en en_US
dc.publisher IUT, EEE en_US
dc.title Metal Nanoparticle Induced Enhancement of Light Absorption in Thin-film PV Cells en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics