dc.identifier.citation |
[1] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018. [2] C. Camerer, G. Loewenstein, and M. Weber, “The curse of knowledge in economic settings: An experimental analysis,” Journal of political Economy, vol. 97, no. 5, pp. 1232–1254, 1989. [3] S. S.-L. Tan and N. Goonawardene, “Internet health information seeking and the patient-physician relationship: a systematic review,” Journal of medical Internet research, vol. 19, no. 1, p. e9, 2017. [4] Y. Cao, R. Shui, L. Pan, M.-Y. Kan, Z. Liu, and T.-S. Chua, “Expertise style transfer: A new task towards better communication between experts and laymen,” arXiv preprint arXiv:2005.00701, 2020. [5] T. Nasukawa and J. Yi, “Sentiment analysis: Capturing favorability using natural language processing,” in Proceedings of the 2nd international conference on Knowledge capture, 2003, pp. 70–77. [6] C. Lin and Y. He, “Joint sentiment/topic model for sentiment analysis,” in Proceedings of the 18th ACM conference on Information and knowledge management, 2009, pp. 375–384. [7] M. M¨artens, S. Shen, A. Iosup, and F. Kuipers, “Toxicity detection in multiplayer online games,” in 2015 International Workshop on Network and Systems Support for Games (NetGames). IEEE, 2015, pp. 1–6. [8] S. Rao and J. Tetreault, “Dear sir or madam, may i introduce the gyafc dataset: Corpus, benchmarks and metrics for formality style transfer,” arXiv preprint arXiv:1803.06535, 2018. 39 [9] S. Prabhumoye, Y. Tsvetkov, R. Salakhutdinov, and A. W. Black, “Style transfer through back-translation,” arXiv preprint arXiv:1804.09000, 2018. [10] J. Li, R. Jia, H. He, and P. Liang, “Delete, retrieve, generate: A simple approach to sentiment and style transfer,” arXiv preprint arXiv:1804.06437, 2018. [11] A. Sudhakar, B. Upadhyay, and A. Maheswaran, “Transforming delete, retrieve, generate approach for controlled text style transfer,” arXiv preprint arXiv:1908.09368, 2019. [12] L. Chen, S. Dai, C. Tao, D. Shen, Z. Gan, H. Zhang, Y. Zhang, and L. Carin, “Adversarial text generation via feature-mover’s distance,” arXiv preprint arXiv:1809.06297, 2018. [13] V. John, L. Mou, H. Bahuleyan, and O. Vechtomova, “Disentangled representation learning for non-parallel text style transfer,” arXiv preprint arXiv:1808.04339, 2018. [14] L. Logeswaran, H. Lee, and S. Bengio, “Content preserving text generation with attribute controls,” arXiv preprint arXiv:1811.01135, 2018. [15] H. Gong, S. Bhat, L. Wu, J. Xiong, and W.-m. Hwu, “Reinforcement learning based text style transfer without parallel training corpus,” arXiv preprint arXiv:1903.10671, 2019. [16] J. He, X. Wang, G. Neubig, and T. Berg-Kirkpatrick, “A probabilistic formulation of unsupervised text style transfer,” arXiv preprint arXiv:2002.03912, 2020. [17] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in vector space,” arXiv preprint arXiv:1301.3781, 2013. [18] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural networks,” in Advances in neural information processing systems, 2014, pp. 3104–3112. 40 [19] K. Cho, B. Van Merri¨enboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase representations using rnn encoder-decoder for statistical machine translation,” arXiv preprint arXiv:1406.1078, 2014. [20] A. Graves, “Generating sequences with recurrent neural networks,” arXiv preprint arXiv:1308.0850, 2013. [21] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997. [22] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to align and translate,” arXi |
en_US |