Performance Comparison of Microchannel Heat Sink using Nano-Liquid-Metal-Fluid Coolant

Show simple item record

dc.contributor.author Khan, Yasin
dc.contributor.author Sarowar, Md Tanbir
dc.contributor.author Mobarrart, Mahir
dc.date.accessioned 2022-04-21T04:15:28Z
dc.date.available 2022-04-21T04:15:28Z
dc.date.issued 2021-03-30
dc.identifier.citation Akbari, M., Galanis, N. and Behzadmehr, A. (2011) ‘Comparative analysis of single and two-phase models for CFD studies of nanofluid heat transfer’, International Journal of Thermal Sciences, 50(8), pp. 1343–1354. doi: 10.1016/j.ijthermalsci.2011.03.008. Akbari, M., Galanis, N. and Behzadmehr, A. (2012) ‘Comparative assessment of single and two-phase models for numerical studies of nanofluid turbulent forced convection’, International Journal of Heat and Fluid Flow, 37, pp. 136–146. doi: 10.1016/j.ijheatfluidflow.2012.05.005. Alfaryjat, A. et al. (2018) ‘The impact of different base nanofluids on the fluid flow and heat transfer characteristics in rhombus microchannels heat sink’, UPB Scientific Bulletin, Series D: Mechanical Engineering, 80(1), pp. 181–194. Alfaryjat, A. et al. (2019) ‘Experimental investigation of thermal and pressure performance in computer cooling systems using different types of nanofluids’, Nanomaterials, 9(9). doi: 10.3390/nano9091231. Ali, R., Palm, B. and Maqbool, M. H. (2012) ‘Flow boiling heat transfer of refrigerants R134A and R245fA in a horizontal micro-channel’, Experimental Heat Transfer, 25(3), pp. 181–196. doi: 10.1080/08916152.2011.609962. Arshad, W. and Ali, H. M. (2017) ‘Experimental investigation of heat transfer and pressure drop in a straight minichannel heat sink using TiO2 nanofluid’, International Journal of Heat and Mass Transfer, 110, pp. 248–256. doi: 10.1016/j.ijheatmasstransfer.2017.03.032. Azizi, Z., Alamdari, A. and Malayeri, M. R. (2015) ‘Convective heat transfer of Cu-water nanofluid in a cylindrical microchannel heat sink’, Energy Conversion and Management, 101, pp. 515–524. doi: 10.1016/j.enconman.2015.05.073. Azizi, Z., Alamdari, A. and Malayeri, M. R. (2016) ‘Thermal performance and friction factor of a cylindrical microchannel heat sink cooled by Cu-water nanofluid’, Applied Thermal Engineering, 99, pp. 970–978. doi: 10.1016/j.applthermaleng.2016.01.140. Bahiraei, M. and Heshmatian, S. (2018) ‘Thermal performance and second law characteristics of two new microchannel heat sinks operated with hybrid nanofluid containing graphene-silver nanoparticles’, Energy Conversion and Management, 168(December 2017), pp. 357–370. doi: Performance Comparison of Microchannel Heat Sink using Nano-Liquid-Metal-Fluid Coolant 47 10.1016/j.enconman.2018.05.020. Balaji, T. et al. (2020) ‘Enhanced heat transport behavior of micro channel heat sink with graphene based nanofluids’, International Communications in Heat and Mass Transfer, 117, p. 104716. doi: 10.1016/j.icheatmasstransfer.2020.104716. Barbier, F. and Blanc, J. (1999) ‘Corrosion of martensitic and austenitic steels in liquid gallium’, Journal of Materials Research, 14(3), pp. 737–744. doi: 10.1557/JMR.1999.0099. Chandra, S. and Prakash, O. (2016) ‘Heat Transfer in Microchannel Heat Sink: Review’, International Conference on Recent Advances in Mechanical Engineering, (October 2016). Choi, S. U. S. (2009) ‘Nanofluids: From vision to reality through research’, Journal of Heat Transfer, 131(3), pp. 1–9. doi: 10.1115/1.3056479. Deng, Y. G. and Liu, J. (2009) ‘Corrosion development between liquid gallium and four typical metal substrates used in chip cooling device’, Applied Physics A: Materials Science and Processing, 95(3), pp. 907–915. doi: 10.1007/s00339-009-5098-1. Dong, T. et al. (2008) ‘Freon R141b flow boiling in silicon microchannel heat sinks: Experimental investigation’, Heat and Mass Transfer/Waerme- und Stoffuebertragung, 44(3), pp. 315–324. doi: 10.1007/s00231-007-0236-9. El-Batsh, H. M., Doheim, M. A. and Hassan, A. F. (2012) ‘On the application of mixture model for two-phase flow induced corrosion in a complex pipeline configuration’, Applied Mathematical Modelling, 36(11), pp. 5686–5699. doi: 10.1016/j.apm.2012.01.017. Farajollahi, B., Etemad, S. G. and Hojjat, M. (2010) ‘Heat transfer of nanofluids in a shell and tube heat exchanger’, International Journal of Heat and Mass Transfer, 53(1–3), pp. 12–17. doi: 10.1016/j.ijheatmasstransfer.2009.10.019. Gong, L., Zhao, J. and Huang, S. (2015) ‘Numerical study on layout of micro-channel heat sink for thermal management of electronic devices’, Applied Thermal Engineering, 88, pp. 480–490. doi: 10.1016/j.applthermaleng.2014.09.048. Hadad, Y. et al. (2019) ‘Three-objective shape optimization and parametric study of a micro-channel heat sink with discrete non-uniform heat flux boundary conditions’, Applied Thermal Performance Comparison of Microchannel Heat Sink using Nano-Liquid-Metal-Fluid Coolant 48 Engineering, 150(January), pp. 720–737. doi: 10.1016/j.applthermaleng.2018.12.128. Halelfadl, S. et al. (2014) ‘Optimization of thermal performances and pressure drop of rectangular microchannel heat sink using aqueous carbon nanotubes based nanofluid’, Applied Thermal Engineering, 62(2), pp. 492–499. doi: 10.1016/j.applthermaleng.2013.08.005. Han, Y. et al. (2012) ‘A review of development of micro-channel heat exchanger applied in air-conditioning system’, Energy Procedia, 14, pp. 148–153. doi: 10.1016/j.egypro.2011.12.910. Hatami, M. and Ganji, D. D. (2014) ‘Thermal and flow analysis of microchannel heat sink (MCHS) cooled by Cu-water nanofluid using porous media approach and least square method’, Energy Conversion and Management, 78, pp. 347–358. doi: 10.1016/j.enconman.2013.10.063. Ho, C. J., Wei, L. C. and Li, Z. W. (2010) ‘An experimental investigation of forced convective cooling performance of a microchannel heat sink with Al2O3/water nanofluid’, Applied Thermal Engineering, 30(2–3), pp. 96–103. doi: 10.1016/j.applthermaleng.2009.07.003. Huminic, G. and Huminic, A. (2012) ‘Application of nanofluids in heat exchangers: A review’, Renewable and Sustainable Energy Reviews, 16(8), pp. 5625–5638. doi: 10.1016/j.rser.2012.05.023. In, S. and Jeong, S. (2009) ‘Flow boiling heat transfer characteristics of R123 and R134a in a micro-channel’, International Journal of Multiphase Flow, 35(11), pp. 987–1000. doi: 10.1016/j.ijmultiphaseflow.2009.07.003. Jang, S. P. and Choi, S. U. S. (2006) ‘Cooling performance of a microchannel heat sink with nanofluids’, Applied Thermal Engineering, 26(17–18), pp. 2457–2463. doi: 10.1016/j.applthermaleng.2006.02.036. Japar, W. M. A. A. et al. (2018) ‘A comprehensive review on numerical and experimental study of nanofluid performance in microchannel heatsink (MCHS)’, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 45(1), pp. 165–176. Kalteh, M. et al. (2012) ‘Experimental and numerical investigation of nanofluid forced convection inside a wide microchannel heat sink’, Applied Thermal Engineering, 36(1), pp. 260–268. doi: 10.1016/j.applthermaleng.2011.10.023. Performance Comparison of Microchannel Heat Sink using Nano-Liquid-Metal-Fluid Coolant 49 Kandlikar, S. G. (2007) ‘A roadmap for implementing minichannels in refrigeration and air-conditioning systems - Current status and future directions’, Heat Transfer Engineering, 28(12), pp. 973–985. doi: 10.1080/01457630701483497. Keshavarz Moraveji, M. and Hejazian, M. (2012) ‘Modeling of turbulent forced convective heat transfer and friction factor in a tube for Fe 3o 4 magnetic nanofluid with computational fluid dynamics’, International Communications in Heat and Mass Transfer, 39(8), pp. 1293–1296. doi: 10.1016/j.icheatmasstransfer.2012.07.003. Khanafer, K., Vafai, K. and Lightstone, M. (2003) ‘Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids’, International Journal of Heat and Mass Transfer, 46(19), pp. 3639–3653. doi: 10.1016/S0017-9310(03)00156-X. Kim, S. J. et al. (2007) ‘Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux’, International Journal of Heat and Mass Transfer, 50(19–20), pp. 4105–4116. doi: 10.1016/j.ijheatmasstransfer.2007.02.002. Kulkarni, D. P., Das, D. K. and Vajjha, R. S. (2009) ‘Application of nanofluids in heating buildings and reducing pollution’, Applied Energy, 86(12), pp. 2566–2573. doi: 10.1016/j.apenergy.2009.03.021. Kumar, V. and Sarkar, J. (2020) ‘Particle ratio optimization of Al2O3-MWCNT hybrid nanofluid in minichannel heat sink for best hydrothermal performance’, Applied Thermal Engineering, 165(August 2019), p. 114546. doi: 10.1016/j.applthermaleng.2019.114546. Lee, J. and Mudawar, I. (2007) ‘Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels’, International Journal of Heat and Mass Transfer, 50(3–4), pp. 452–463. doi: 10.1016/j.ijheatmasstransfer.2006.08.001. Li, X. and Jia, L. (2015) ‘The investigation on flow boiling heat transfer of R134a in micro-channels’, Journal of Thermal Science, 24(5), pp. 452–462. doi: 10.1007/s11630-015-0808-9. Liu, H. L., An, X. K. and Wang, C. S. (2017) ‘Heat transfer performance of T-Y type micro-channel heat sink with liquid GaInSn coolant’, International Journal of Thermal Sciences, 120, pp. 203–219. doi: 10.1016/j.ijthermalsci.2017.06.008. Liu, Y. et al. (2015) ‘Heat transfer performance of lotus-type porous copper heat sink with liquid Performance Comparison of Microchannel Heat Sink using Nano-Liquid-Metal-Fluid Coolant 50 GaInSn coolant’, International Journal of Heat and Mass Transfer, 80, pp. 605–613. doi: 10.1016/j.ijheatmasstransfer.2014.09.058. Liu, Z. H. and Li, Y. Y. (2012) ‘A new frontier of nanofluid research - Application of nanofluids in heat pipes’, International Journal of Heat and Mass Transfer, 55(23–24), pp. 6786–6797. doi: 10.1016/j.ijheatmasstransfer.2012.06.086. Lotfi, R., Rashidi, A. M. and Amrollahi, A. (2012) ‘Experimental study on the heat transfer enhancement of MWNT-water nanofluid in a shell and tube heat exchanger’, International Communications in Heat and Mass Transfer, 39(1), pp. 108–111. doi: 10.1016/j.icheatmasstransfer.2011.10.002. Ma, K. Q. and Liu, J. (2007) ‘Nano liquid-metal fluid as ultimate coolant’, Physics Letters, Section A: General, Atomic and Solid State Physics, 361(3), pp. 252–256. doi: 10.1016/j.physleta.2006.09.041. Mansour, R. Ben, Galanis, N. and Nguyen, C. T. (2007) ‘Effect of uncertainties in physical properties on forced convection heat transfer with nanofluids’, Applied Thermal Engineering, 27(1), pp. 240–249. doi: 10.1016/j.applthermaleng.2006.04.011. Maré, T. et al. (2011) ‘Comparison of the thermal performances of two nanofluids at low temperature in a plate heat exchanger’, Experimental Thermal and Fluid Science, 35(8), pp. 1535–1543. doi: 10.1016/j.expthermflusci.2011.07.004. Martínez, V. A. et al. (2019) ‘Numerical study of TiO2-based nanofluids flow in microchannel heat sinks: Effect of the Reynolds number and the microchannel height’, Applied Thermal Engineering, 161(July). doi: 10.1016/j.applthermaleng.2019.114130. Masuda, H. et al. (1993) ‘Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles. Dispersion of Al2O3, SiO2 and TiO2 Ultra-Fine Particles.’, Netsu Bussei, 7(4), pp. 227–233. doi: 10.2963/jjtp.7.227. Mohd-Ghazali, N. et al. (2019) ‘Thermal and hydrodynamic performance of a microchannel heat sink with carbon nanotube nanofluids: Effect of concentration and channel section’, Journal of Thermal Analysis and Calorimetry, 138(2), pp. 937–945. doi: 10.1007/s10973-019-08260-2. Mokhtari Moghari, R. et al. (2011) ‘Two phase mixed convection Al2O3-water nanofluid flow Performance Comparison of Microchannel Heat Sink using Nano-Liquid-Metal-Fluid Coolant 51 in an annulus’, International Journal of Multiphase Flow, 37(6), pp. 585–595. doi: 10.1016/j.ijmultiphaseflow.2011.03.008. Moraveji, M. K. et al. (2011) ‘Modeling of convective heat transfer of a nanofluid in the developing region of tube flow with computational fluid dynamics’, International Communications in Heat and Mass Transfer, 38(9), pp. 1291–1295. doi: 10.1016/j.icheatmasstransfer.2011.06.011. Moraveji, M. K. and Ardehali, R. M. (2013) ‘CFD modeling (comparing single and two-phase approaches) on thermal performance of Al2o3/water nanofluid in mini-channel heat sink’, International Communications in Heat and Mass Transfer, 44, pp. 157–164. doi: 10.1016/j.icheatmasstransfer.2013.02.012. Muhammad, A. et al. (2020) ‘Comparison of pressure drop and heat transfer performance for liquid metal cooled mini-channel with different coolants and heat sink materials’, Journal of Thermal Analysis and Calorimetry, 141(1), pp. 289–300. doi: 10.1007/s10973-020-09318-2. Muhammad, A., Selvakumar, D. and Wu, J. (2020) ‘Numerical investigation of laminar flow and heat transfer in a liquid metal cooled mini-channel heat sink’, International Journal of Heat and Mass Transfer, 150, p. 119265. doi: 10.1016/j.ijheatmasstransfer.2019.119265. Mukesh Kumar, P. C. and Arun Kumar, C. M. (2020) ‘Numerical study on heat transfer performance using Al2O3/water nanofluids in six circular channel heat sink for electronic chip’, Materials Today: Proceedings, 21(xxxx), pp. 194–201. doi: 10.1016/j.matpr.2019.04.220. Mukherjee, S. et al. (2018) ‘Theoretical modeling and optimization of microchannel heat sink cooling with TiO2-water and ZnO-water nanofluids’, International Journal of Heat and Technology, 36(1), pp. 165–172. doi: 10.18280/ijht.360122. Naqiuddin, N. H. et al. (2018) ‘Numerical investigation for optimizing segmented micro-channel heat sink by Taguchi-Grey method’, Applied Energy, 222(December 2017), pp. 437–450. doi: 10.1016/j.apenergy.2018.03.186. Nitiapiruk, P. et al. (2013) ‘Performance characteristics of a microchannel heat sink using TiO2/water nanofluid and different thermophysical models’, International Communications in Heat and Mass Transfer, 47, pp. 98–104. doi: 10.1016/j.icheatmasstransfer.2013.07.001. Performance Comparison of Microchannel Heat Sink using Nano-Liquid-Metal-Fluid Coolant 52 Pantzali, M. N. et al. (2009) ‘Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface’, International Journal of Heat and Fluid Flow, 30(4), pp. 691–699. doi: 10.1016/j.ijheatfluidflow.2009.02.005. Popescu, T. et al. (2012) ‘Microchannel heat exchangers - Present and perspectives’, UPB Scientific Bulletin, Series D: Mechanical Engineering, 74(3), pp. 55–70. Qi, C. et al. (2017) ‘Two-phase lattice Boltzmann simulation of the effects of base fluid and nanoparticle size on natural convection heat transfer of nanofluid’, International Journal of Heat and Mass Transfer, 105, pp. 664–672. doi: 10.1016/j.ijheatmasstransfer.2016.10.043. Qi, C., Liang, L. and Rao, Z. (2016) ‘Study on the flow and heat transfer of liquid metal based nanofluid with different nanoparticle radiuses using two-phase lattice Boltzmann method’, International Journal of Heat and Mass Transfer, 94, pp. 316–326. doi: 10.1016/j.ijheatmasstransfer.2015.11.068. Razali, A. A., Sadikin, A. and Ibrahim, S. A. (2017) ‘Heat transfer of Al2O3 nanofluids in microchannel heat sink’, AIP Conference Proceedings, 1831. doi: 10.1063/1.4981191. Saripella, S. K. et al. (2007) ‘Effects of nanofluid coolant in a class 8 truck engine’, SAE Technical Papers, (724). doi: 10.4271/2007-01-2141. Sawada, T. et al. (2000) ‘Gallium-cooled liquid metallic-fueled fast reactor’, Progress in Nuclear Energy, 37(1–4), pp. 313–319. doi: 10.1016/s0149-1970(00)00064-0. Sidik, N. A. C., Yazid, M. N. A. W. M. and Mamat, R. (2015) ‘A review on the application of nanofluids in vehicle engine cooling system’, International Communications in Heat and Mass Transfer, 68, pp. 85–90. doi: 10.1016/j.icheatmasstransfer.2015.08.017. Sivakumar, A., Alagumurthi, N. and Senthilvelan, T. (2017) ‘Effect of Serpentine Grooves on Heat Transfer Characteristics of Microchannel Heat Sink with Different Nanofluids’, Heat Transfer - Asian Research, 46(3), pp. 201–217. doi: 10.1002/htj.21206. Smither, R. K. et al. (1988) ‘Liquid gallium metal cooling for optical elements with high heat loads’, Nuclear Inst. and Methods in Physics Research, A, 266(1–3), pp. 517–524. doi: 10.1016/0168-9002(88)90440-8. Performance Comparison of Microchannel Heat Sink using Nano-Liquid-Metal-Fluid Coolant 53 Song, H. et al. (2020) ‘Ga-Based Liquid Metal Micro/Nanoparticles: Recent Advances and Applications’, Small, 16(12), pp. 1–21. doi: 10.1002/smll.201903391. Tawk, M. et al. (2013) ‘Numerical and experimental investigations of the thermal management of power electronics with liquid metal mini-channel coolers’, IEEE Transactions on Industry Applications, 49(3), pp. 1421–1429. doi: 10.1109/TIA.2013.2252132. Taylor, P. (2006) ‘Advances in science and technology of compact heat exchangers’, Heat Transfer Engineering, 27(5), pp. 3–22. doi: 10.1080/01457630600559462. Tuckerman, D. B. et al. (1981) ‘High-performance heat sinking for VLSI’, IEEE Electron Device Letters, 2(5), pp. 126–129. doi: 10.1109/EDL.1981.25367. Vasu, V., Rama Krishna, K. and Kumar, A. C. S. (2008) ‘Thermal design analysis of compact heat exchanger using nanofluids’, International Journal of Nanomanufacturing, 2(3), pp. 271–288. doi: 10.1504/IJNM.2008.018949. Weisberg, A., Bau, H. H. and Zemel, J. N. (1992) ‘Analysis of microchannels for integrated cooling’, International Journal of Heat and Mass Transfer, 35(10), pp. 2465–2474. doi: 10.1016/0017-9310(92)90089-B. Wen, D. and Ding, Y. (2004) ‘Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions’, International Journal of Heat and Mass Transfer, 47(24), pp. 5181–5188. doi: 10.1016/J.IJHEATMASSTRANSFER.2004.07.012. Zhou, X. et al. (2018) ‘Numerical study of heat transfer enhancement of nano liquid-metal fluid forced convection in circular tube’, Journal of Heat Transfer, 140(8). doi: 10.1115/1.4039685. en_US
dc.identifier.uri http://hdl.handle.net/123456789/1376
dc.description Supervised by Prof. Dr. Md. Hamidur Rahman Department of Mechanical and Chemical Engineering(MPE), Islamic University of Technology(IUT), Board Bazar, Gazipur-1704, Bangladesh en_US
dc.description.abstract Augmentation of heat transfer from compact areas is a growing concern for many researchers for quite a long time. The search for ultimate cooling solutions is one of the key aspects of transforming different micro-electro-mechanical-systems into compact sizes with heavy computing power. Microchannel heat sink is one of the pioneering cooling solutions available that possess the potential to reach the ultimate cooling solution. In this study, emphasis is given on different coolants used in microchannel heat sinks. The study presents detailed heat transfer and fluid flow analysis in a microchannel heat sink with liquid metal based Nano fluid coolants. The heat transfers and fluid flow inside the micro channels is predicted using finite volume method. The numerical model is validated against experimental data available in literature. The findings in this study is also compared with similar studies available in literature. A good agreement is noticed between present study and the available data in literature. In our study, we’ve presented for the first time four different solvent materials to prepare the coolant. These solvent materials are gallium based liquid metals which are widely used throughout the world. We’ve added different Nano particles into these liquid metal solvents to present ‘Nano-Liquid-Metal-Fluid’ that can remove a larger amount of heat flux compared to the Nano fluids prepared with water. en_US
dc.language.iso en en_US
dc.publisher Department of Mechanical and Production Engineering (MPE),Islamic University of Technology(IUT), Board Bazar, Gazipur, Bangladesh en_US
dc.title Performance Comparison of Microchannel Heat Sink using Nano-Liquid-Metal-Fluid Coolant en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics