Study of the Applicability of Chemical Precipitation and Electrocoagulation Method for Chromium Recovery in CETP at Savar Leather Industrial Park

Show simple item record

dc.contributor.author Rahman, Sazedur
dc.contributor.author Karim, Tasdee Al
dc.contributor.author Khan, Munabbih Hasan Nadid
dc.date.accessioned 2022-04-21T04:48:01Z
dc.date.available 2022-04-21T04:48:01Z
dc.date.issued 2021-03-30
dc.identifier.citation [1] “World Development Indicators.” https://datacatalog.worldbank.org/dataset/world-development-indicators (accessed Jan. 01, 2021). [2] “Bangladesh GDP Growth Rate | 1994-2020 Data | 2021-2023 Forecast | Historical | Chart.” https://tradingeconomics.com/bangladesh/gdp-growth (accessed Mar. 26, 2021). [3] “Economy of Bangladesh - Wikipedia.” https://en.wikipedia.org/wiki/Economy_of_Bangladesh (accessed Mar. 26, 2021). [4] H. L. Paul, A. P. M. Antunes, A. D. Covington, P. Evans, and P. S. Philips, “Bangladeshi leather industry: An overview of recent sustainable developments,” J. Soc. Leather Technol. Chem., vol. 97, no. 1, pp. 25–32, 2013. [5] “Global Leather Industry Factsheet 2020: Top 10 Largest Leather Producing Countries, Largest Exporters & Importers,” [Online]. Available: https://blog.bizvibe.com/blog/top-10-largest-leather-producing-countries. [6] W. Khan, “Leather Industry in Bangladesh: Opportunities and Challenges,” Am. J. Trade Policy, vol. 1, no. 3, pp. 119–126, 2014, doi: 10.18034/ajtp.v1i3.373. [7] A. Razzaque, M. Abu Eusuf, M. Abdul Khaleque, M. I. H. Bhuiyan, and D. Rahman, “Promoting Decent Work and Acceptable Working Conditions in the Tannery Sector in Bangladesh: Tannery Sector and its Relocation,” no. December, 2019, [Online]. Available: https://rapidbd.org/wp-content/uploads/2020/05/Tannery-Post-Relocation.pdf. [8] C. Fabiani, F. Ruscio, M. Spadoni, and M. Pizzichini, “Chromium(III) salts recovery process from tannery wastewaters,” Desalination, vol. 108, no. 1–3, pp. 183–191, Feb. 62 1997, doi: 10.1016/S0011-9164(97)00026-X. [9] “Regional Programme for Pollution Control in the Tanning Industry in South-East Asia CHROME MANAGEMENT IN THE TANYARD.” [10] A. A. Belay, “Impacts of Chromium from Tannery Effluent and Evaluation of Alternative Treatment Options,” J. Environ. Prot. (Irvine,. Calif)., vol. 01, no. 01, pp. 53–58, 2010, doi: 10.4236/jep.2010.11007. [11] S. S. Adeel, “Recovery of Chromium from the Tannery Wastewater by Use of Bacillus Subtilis in Gujranwala, Pakistan,” IOSR J. Pharm. Biol. Sci., vol. 2, no. 2, pp. 36–45, 2012, doi: 10.9790/3008-0223645. [12] A. E. Gebre, H. F. Demissie, S. T. Mengesha, and M. T. Segni, “The Pollution Profile of Modjo River Due to Industrial Wastewater Discharge,” Oromia, Ethiop. J Env. Anal Toxicol, vol. 6, p. 363, 2016, doi: 10.4172/2161-0525.1000363. [13] A. Bedemo, B. S. Chandravanshi, and F. Zewge, “Removal of trivalent chromium from aqueous solution using aluminum oxide hydroxide,” Springerplus, vol. 5, no. 1, 2016, doi: 10.1186/s40064-016-2983-x. [14] S. Kocaoba and G. Akcin, “Removal and recovery of chromium and chromium speciation with MINTEQA2,” Talanta, vol. 57, no. 1, pp. 23–30, Apr. 2002, doi: 10.1016/S0039-9140(01)00677-4. [15] M. M. Barbooti, M. A. Zablouk, and U. A. Al-zubaidi, “Recovery of Chromium from Waste Taning Liquors by Magnesium Oxide,” vol. 1, no. 1, pp. 29–38, 2010. [16] M. A. Mottalib and S. H. Somoal, “REMOVAL OF CHROMIUM FROM TANNERY 63 WASTEWATER BY TANNERY LIME LIQUOR; A VERY COST EFFECTIVE METHOD,” 2015. Accessed: Mar. 27, 2021. [Online]. Available: http://www.journalcra.com. [17] A. T. Tadesse and L. A. Seyoum, “Evaluation of selected wetland plants for removal of chromium from tannery wastewater in constructed wetlands, Ethiopia,” African J. Environ. Sci. Technol., vol. 9, no. 5, pp. 420–427, 2015, doi: 10.5897/ajest2014.1793. [18] “EEPA (2001) Situation Analysis; the Industrial Sector. ESID Project US/ETH/99/068/ETHIOPIA, EPA/UNIDO, Addis Ababa. - References - Scientific Research Publishing.” https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.aspx?ReferenceID=1828375 (accessed Mar. 27, 2021). [19] M. Margarida Alves, C. G. González Beça, R. G. de Carvalho, J. M. Castanheira, M. C. Sol Pereira, and L. A. T. Vasconcelos, “Chromium removal in tannery wastewaters ‘polishing’ by Pinus sylvestris bark,” Water Res., vol. 27, no. 8, pp. 1333–1338, Aug. 1993, doi: 10.1016/0043-1354(93)90220-C. [20] C. Int, “Chemical precipitation method for chromium removal and its recovery from tannery wastewater in Ethiopia,” vol. 3, no. 4, pp. 392–405, 2019, doi: 10.31221/osf.io/m7h5k. [21] N. Abbas, F. Deba, K. Iqbal, T. Shafique, and H. S. Ahmed, “Study of tannery wastewater treatability by precipitation process,” Pak. J. Sci. Ind. Res., vol. 54, no. 1, pp. 52–56, 2011. [22] A. Esmaeili, A. Esmaeili, A. Mesdaghi Nia, and R. Vazirinejad, “Chromium (III) 64 Removal and Recovery from Tannery Wastewater by Precipitation Process,” Am. J. Appl. Sci., vol. 2, no. 10, pp. 1471–1473, 2005. [23] E. Andrioli, L. Petry, and M. Gutterres, “Environmentally friendly hide unhairing: Enzymatic-oxidative unhairing as an alternative to use of lime and sodium sulfide,” Process Saf. Environ. Prot., vol. 93, pp. 9–17, Jan. 2015, doi: 10.1016/j.psep.2014.06.001. [24] E. GilPavas, I. Dobrosz-Gómez, and M. Á. Gómez-García, “The removal of the trivalent chromium from the leather tannery wastewater: The optimisation of the electro-coagulation process parameters,” Water Sci. Technol., vol. 63, no. 3, pp. 385–394, 2011, doi: 10.2166/wst.2011.232. [25] F. Akbal and S. Camcidotless, “Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation,” Desalination, vol. 269, no. 1–3, pp. 214–222, Mar. 2011, doi: 10.1016/j.desal.2010.11.001. [26] E. A. Vik, D. A. Carlson, A. S. Eikum, and E. T. Gjessing, “Electrocoagulation of potable water,” Water Res., vol. 18, no. 11, pp. 1355–1360, Jan. 1984, doi: 10.1016/0043-1354(84)90003-4. [27] A. Gürses, M. Yalçin, and C. Doğar, “Electrocoagulation of some reactive dyes: a statistical investigation of some electrochemical variables,” Waste Manag., vol. 22, no. 5, pp. 491–499, Aug. 2002, doi: 10.1016/S0956-053X(02)00015-6. [28] Z. Zaroual, M. Azzi, N. Saib, and E. Chainet, “Contribution to the study of electrocoagulation mechanism in basic textile effluent,” J. Hazard. Mater., vol. 131, pp. 73–78, 2006, doi: 10.1016/j.jhazmat.2005.09.021. 65 [29] “Smart Cities—Opportunities and Challenges: Select Proceedings of ICSC 2019 - Google Books.” https://books.google.com.bd/books?id=gJneDwAAQBAJ&pg=PA777&lpg=PA777&dq=W.+Balla,+A.H.+Essdki,+B.+Geourich,+A.+Dassaa,+H.+Chenik,+M.+Azzi,+J.+Hazard.+Mater.+184+(2010)&source=bl&ots=PX_PKGFKom&sig=ACfU3U3-Dlkfts-J5n0oVpPvR18DRWXabw&hl=en&sa=X&ved=2ahUKEwjqw8zz-tDvAhXmxDgGHT5tAosQ6AEwAHoECAIQAw#v=onepage&q=W. Balla%2C A.H. Essdki%2C B. Geourich%2C A. Dassaa%2C H. Chenik%2C M. Azzi%2C J. Hazard. Mater. 184 (2010)&f=false (accessed Mar. 27, 2021). [30] X. Chen, G. Chen, and P. L. Yue, “Separation of pollutants from restaurant wastewater by electrocoagulation,” Sep. Purif. Technol., vol. 19, no. 1–2, pp. 65–76, Jun. 2000, doi: 10.1016/S1383-5866(99)00072-6. [31] N. Adhoum, L. Monser, N. Bellakhal, and J. E. Belgaied, “Treatment of electroplating wastewater containing Cu2+, Zn 2+ and Cr(VI) by electrocoagulation,” J. Hazard. Mater., vol. 112, no. 3, pp. 207–213, Aug. 2004, doi: 10.1016/j.jhazmat.2004.04.018. [32] Asian Development Bank, “Developing the leather industry in Bangladesh,” ADB Briefs, vol. NO. 102, no. 102, pp. 1–8, 2018, [Online]. Available: http://dx.doi.org/10.22617/BRF189645-2. [33] N. Drouiche, N. Ghaffour, H. Lounici, and M. Mameri, “Electrocoagulation of chemical mechanical polishing wastewater,” Desalination, vol. 214, no. 1–3, pp. 31–37, Aug. 2007, doi: 10.1016/j.desal.2006.11.009. [34] I. A. Şengil and M. özacar, “Treatment of dairy wastewaters by electrocoagulation using 66 mild steel electrodes,” J. Hazard. Mater., vol. 137, no. 2, pp. 1197–1205, Sep. 2006, doi: 10.1016/j.jhazmat.2006.04.009. [35] J. wei FENG, Y. bing SUN, Z. ZHENG, J. biao ZHANG, S. LI, and Y. chun TIAN, “Treatment of tannery wastewater by electrocoagulation,” J. Environ. Sci., vol. 19, no. 12, pp. 1409–1415, Jan. 2007, doi: 10.1016/S1001-0742(07)60230-7. [36] M. Uǧurlu, A. Gürses, Ç. Doǧar, and M. Yalçin, “The removal of lignin and phenol from paper mill effluents by electrocoagulation,” J. Environ. Manage., vol. 87, no. 3, pp. 420–428, May 2008, doi: 10.1016/j.jenvman.2007.01.007. [37] S. Khansorthong and M. Hunsom, “Remediation of wastewater from pulp and paper mill industry by the electrochemical technique,” Chem. Eng. J., vol. 151, no. 1–3, pp. 228–234, Aug. 2009, doi: 10.1016/j.cej.2009.02.038. [38] M. Kobya and S. Delipinar, “Treatment of the baker’s yeast wastewater by electrocoagulation,” J. Hazard. Mater., vol. 154, no. 1–3, pp. 1133–1140, Jun. 2008, doi: 10.1016/j.jhazmat.2007.11.019. [39] M. Kobya, E. Senturk, and M. Bayramoglu, “Treatment of poultry slaughterhouse wastewaters by electrocoagulation,” J. Hazard. Mater., vol. 133, no. 1–3, pp. 172–176, May 2006, doi: 10.1016/j.jhazmat.2005.10.007. [40] B. Zhu, D. A. Clifford, and S. Chellam, “Comparison of electrocoagulation and chemical coagulation pretreatment for enhanced virus removal using microfiltration membranes,” Water Res., vol. 39, no. 13, pp. 3098–3108, Aug. 2005, doi: 10.1016/j.watres.2005.05.020. 67 [41] P. R. Kumar, S. Chaudhari, K. C. Khilar, and S. P. Mahajan, “Removal of arsenic from water by electrocoagulation,” Chemosphere, vol. 55, no. 9, pp. 1245–1252, Jun. 2004, doi: 10.1016/j.chemosphere.2003.12.025. [42] N. Bektaş, H. Akbulut, H. Inan, and A. Dimoglo, “Removal of phosphate from aqueous solutions by electro-coagulation,” J. Hazard. Mater., vol. 106, no. 2–3, pp. 101–105, Jan. 2004, doi: 10.1016/j.jhazmat.2003.10.002. [43] M. Murugananthan, G. Bhaskar Raju, and S. Prabhakar, “Removal of sulfide, sulfate and sulfite ions by electro coagulation,” J. Hazard. Mater., vol. 109, no. 1–3, pp. 37–44, Jun. 2004, doi: 10.1016/j.jhazmat.2003.12.009. [44] A. E. Yilmaz, R. Boncukcuoglu, M. T. Yilmaz, and M. M. Kocakerim, “Adsorption of boron from boron-containing wastewaters by ion exchange in a continuous reactor,” J. Hazard. Mater., vol. 117, no. 2–3, pp. 221–226, Jan. 2005, doi: 10.1016/j.jhazmat.2004.09.012. [45] A. S. Koparal and Ü. B. Öütveren, “Removal of nitrate from water by electroreduction and electrocoagulation,” J. Hazard. Mater., vol. 89, no. 1, pp. 83–94, Jan. 2002, doi: 10.1016/S0304-3894(01)00301-6. [46] P. Gao, X. Chen, F. Shen, and G. Chen, “Removal of chromium(VI) from wastewater by combined electrocoagulation- electroflotation without a filter,” Sep. Purif. Technol., vol. 43, no. 2, pp. 117–123, Jan. 2005, doi: 10.1016/j.seppur.2004.10.008. [47] M. Gheju and I. Balcu, “Removal of chromium from Cr(VI) polluted wastewaters by reduction with scrap iron and subsequent precipitation of resulted cations,” J. Hazard. Mater., vol. 196, pp. 131–138, Nov. 2011, doi: 10.1016/j.jhazmat.2011.09.002. 68 [48] “Water reuse: An alternative to minimize the environmental impact on the leather industry | Request PDF.” https://www.researchgate.net/publication/328277122_Water_reuse_An_alternative_to_minimize_the_environmental_impact_on_the_leather_industry (accessed Mar. 28, 2021). [49] M. Y. A. Mollah, P. Morkovsky, J. A. G. Gomes, M. Kesmez, J. Parga, and D. L. Cocke, “Fundamentals, present and future perspectives of electrocoagulation,” J. Hazard. Mater., vol. 114, no. 1–3, pp. 199–210, Oct. 2004, doi: 10.1016/j.jhazmat.2004.08.009. [50] F. R. Espinoza-Quiñones et al., “Pollutant removal from tannery effluent by electrocoagulation,” Chem. Eng. J., vol. 151, no. 1–3, pp. 59–65, Aug. 2009, doi: 10.1016/j.cej.2009.01.043. [51] “Removal of hexavalent chromium from electroplating wastewater by electrocoagulation with iron electrodes | Request PDF.” https://www.researchgate.net/publication/267706404_Removal_of_hexavalent_chromium_from_electroplating_wastewater_by_electrocoagulation_with_iron_electrodes (accessed Mar. 28, 2021). [52] S. K. Gunatilake, “Methods of Removing Heavy Metals from,” J. Multidiscip. Eng. Sci. Stud. Ind. Wastewater, vol. 1, no. 1, pp. 13–18, 2015, [Online]. Available: www.jmess.org. [53] P. Saranraj and D. Sujitha, “Microbial Bioremediation of Chromium in Tannery Effluent: A Review,” Int. J. Microbiol. Res., vol. 4, no. 3, pp. 305–320, 2013, doi: 10.5829/idosi.ijmr.2013.4.3.81228. [54] A. M. Zayed and N. Terry, “Chromium in the environment: Factors affecting biological 69 remediation,” in Plant and Soil, Feb. 2003, vol. 249, no. 1, pp. 139–156, doi: 10.1023/A:1022504826342. [55] USEPA, “Wastewater Technology Fact Sheet Dechlorination,” Environ. Prot. Agency, pp. 1–7, 2000. [56] “Separation of the chromium(III) present in a tanning wastewater by means of precipitation, reverse osmosis and adsorption.” https://www.researchgate.net/publication/262547324_Separation_of_the_chromiumIII_present_in_a_tanning_wastewater_by_means_of_precipitation_reverse_osmosis_and_adsorption (accessed Mar. 27, 2021). [57] “Multistep Optimization and Residue Disposal Study for Electrochemical Treatment of Textile Wastewater Using Aluminum Electrode | Request PDF.” https://www.researchgate.net/publication/274270268_Multistep_Optimization_and_Residue_Disposal_Study_for_Electrochemical_Treatment_of_Textile_Wastewater_Using_Aluminum_Electrode (accessed Mar. 28, 2021). [58] B. Mella, A. C. Glanert, and M. Gutterres, “Removal of chromium from tanning wastewater and its reuse,” Process Saf. Environ. Prot., vol. 95, pp. 195–201, May 2015, doi: 10.1016/j.psep.2015.03.007. [59] S. Ferdous, R. Ahmed, M. Chowdhury, I. Faruk, and R. Mamtaz, “Is the Cetp At Savar Polluting the Dhaleshwari River?,” 7th Int. Conf. Water Flood Manag., no. January, pp. 2–4, 2019, [Online]. Available: https://www.researchgate.net/publication/338774816_IS_THE_CETP_AT_SAVAR_POLLUTING_THE_DHALESHWARI_RIVER. 70 [60] M. M. Hasan, M. S. Ahmed, and R. Adnan, “Assessment of physico-chemical characteristics of river water emphasizing tannery industrial park: a case study of Dhaleshwari River, Bangladesh,” Environ. Monit. Assess., vol. 192, no. 12, 2020, doi: 10.1007/s10661-020-08750-z. en_US
dc.identifier.uri http://hdl.handle.net/123456789/1379
dc.description Supervised by Prof. Dr. Shamsuddin Ahmed Department of Mechanical & Production Engineering (MPE) Islamic University of Technology Board Bazar, Gazipur Dhaka, Bangladesh. en_US
dc.description.abstract When we visited tanneries at Savar Tannery Industrial Estate in order to gain a deeper understanding of the leather tanning industry of Bangladesh, we realized that the lack of environmental compliance certification is holding the industry back from further development. That is why we decided to work on one of the leading concerns, the release of chromium to the environment. We conducted a thorough search for applicable methods, conducted feasibility studies on the selected topics by analyzing the input water conditions and finally calculated the expected method outcome in regard of collected data. We tried to collect up to date information relating to water conditions and cost analysis. We predicted Chemical Precipitation to be at least 99.5% efficient in removing chromium from the wastewater. The efficiency of CP depends on selected coagulant and pH of inlet water. The amount of chromium in outlet water comes within the allowable limit after one treatment. Electrocoagulation on the other hand gives vastly different efficiencies for different electrodes. Whichever electrode we choose; it takes a minimum of two treatments to bring the chromium content within the allowable limit. We found that aluminum and iron both can be used as electrodes in a EC unit at Savar CETP successfully. Our study gives the concerned authority a reference if they choose to add a chromium recovery unit to the existing CETP. It is of great importance that the industry takes necessary steps to ensure environmental compliance and our study might help achieve that. We could not conduct practical experiments due to the pandemic situation. So, we hope others will build on our research and carry out the experiments using the tannery waste water from Savar TIE. Our study 2 indicates that a chromium recovery unit in conjunction to the Savar CETP will be enough eliminate concerns regarding chromium pollution. en_US
dc.language.iso en en_US
dc.publisher Department of Mechanical and Production Engineering (MPE),Islamic University of Technology(IUT), Board Bazar, Gazipur, Bangladesh en_US
dc.title Study of the Applicability of Chemical Precipitation and Electrocoagulation Method for Chromium Recovery in CETP at Savar Leather Industrial Park en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics