Techno-Economic and Environmental Feasibility Analysis of Solar water Heating System for a Textile Industry In Bangladesh

Show simple item record

dc.contributor.author Rahman, Md. Ashiqur
dc.contributor.author Salahuddin, R.R.M.
dc.contributor.author Shoieb
dc.date.accessioned 2022-04-21T05:01:56Z
dc.date.available 2022-04-21T05:01:56Z
dc.date.issued 2021-03-30
dc.identifier.citation [1] US EIA, “EIA: International Energy Outlook 2019 Presentation,” EIA, 2019. [Online]. Available: https://www.eia.gov/outlooks/ieo/pdf/ieo2019. pdf. [2] Gdp growth (annual %) - bangladesh. [Online]. Available: https : / / data . worldbank.org/indicator/NY.GDP.MKTP.KD.ZG?locations=BD. [3] H. Ritchie and M. Roser, “Bangladesh: Energy country profile,” Our World in Data, Jul. 2020. [Online]. Available: https : / / ourworldindata . org / energy/country/bangladesh. [4] K. B. Debnath, M. Mourshed, and S. P. K. Chew, “Modelling and Forecasting Energy Demand in Rural Households of Bangladesh,” Energy Procedia, vol. 75, pp. 2731–2737, 2015, issn: 18766102. doi: 10 . 1016 / j . egypro . 2015.07.480. [5] IEA, Global share of total energy supply by source, 2018 – charts – data statistics. [Online]. Available: https://www.iea.org/data-and-statistics/ charts/global-share-of-total-energy-supply-by-source-2018. 91 BIBLIOGRAPHY 92 [6] S. Islam and M. Z. R. Khan, “A Review of Energy Sector of Bangladesh,” Energy Procedia, vol. 110, no. December 2016, pp. 611–618, 2017, issn: 18766102. doi: 10.1016/j.egypro.2017.03.193. [7] L. Kumar, M. Hasanuzzaman, and N. A. Rahim, “Global advancement of solar thermal energy technologies for industrial process heat and its future prospects: A review,” Energy Conversion and Management, vol. 195, no. February, pp. 885–908, 2019, issn: 01968904. doi: 10.1016/j.enconman.2019. 05.081. [8] European Solar Thermal Industry Federation, United Nations Development Programme, International Copper Association, “Solar Heat for Industrial Process,” [Online]. Available: http://solarheateurope.eu/wp-content/ uploads/2017/06/Solar-Heat-for-Industrial-Process.pdf. [9] P. Sarkar, A. Anjum, E. A. Khan, et al., “Overview of Major Industries in Bangladesh,” Journal of Chemical Engineering, vol. 30, no. 1, pp. 51–58, 2017, issn: 2221-7436. doi: 10.3329/jce.v30i1.34798. [10] H. Chowdhury, T. Chowdhury, M.Thirugnanasambandam, M. Farhan, J. U. Ahamed, R. Saidur, and S. M. Sait, “A study on exergetic efficiency vis-`a-vis sustainability of industrial sector in Bangladesh,” Journal of Cleaner Production, vol. 231, no. 2019, pp. 297–306, 2019, issn: 09596526. doi: 10.1016/j. jclepro.2019.05.174. [11] Energy Efficiency, “Conservation Master Plan up to 2030,” Sustainable and Renewable Energy Development Authority (SREDA) and Power Division Ministry of Power, Energy and Mineral Resources Government of the People’s Republic of Bangladesh: Dhaka, Bangladesh, no. March, 2015. BIBLIOGRAPHY 93 [12] H. Schweiger, J. F. Mendes, M. J. Carvalho, K. Hennecke, and D. Kr¨uger, “Solar heat for industrial processes,” Advances in Solar Energy: An Annual Review of Research and Development in Renewable Energy Technologies, vol. 17, no. January, pp. 216–260, 2015. doi: 10.4324/9781315793221-14. [13] US EIA, US -EIA Independent Statistics and Analysis. [Online]. Available: https: //www.eia.gov/international/analysis/country/BGD. [14] IEA, Bangladesh - countries regions. [Online]. Available: https://www.iea. org/countries/bangladesh. [15] M. Rehfeldt, E. Worrell, W. Eichhammer, and T. Fleiter, “A review of the emission reduction potential of fuel switch towards biomass and electricity in European basic materials industry until 2030,” Renewable and Sustainable Energy Reviews, vol. 120, no. December 2019, p. 109 672, 2020, issn: 18790690. doi: 10.1016/j.rser.2019.109672. [16] A. Gautam, S. Chamoli, A. Kumar, and S. Singh, A review on technical improvements, economic feasibility and world scenario of solar water heating system, Feb. 2017. doi: 10.1016/j.rser.2016.09.104. [17] S. H. Farjana, N. Huda, M. A. Mahmud, and R. Saidur, Solar process heat in industrial systems – A global review, Feb. 2018. doi: 10.1016/j.rser.2017. 08.065. [18] B. Epp and M. Oropeza, “Solar Heat for Industry (solar payback),” Solrico, p. 18, 2017. [19] European Solar Thermal Industry Federation, “Solar Industrial Process Heat. State of the Art,” Key Issues for Renewable Heat in Europe, pp. 1–15, 2006. BIBLIOGRAPHY 94 [20] P. K. Halder, “Potential and economic feasibility of solar home systems implementation in Bangladesh,” Renewable and Sustainable Energy Reviews, vol. 65, pp. 568–576, 2016, issn: 18790690. doi: 10.1016/j.rser.2016.07.062. [21] D. Mahmud Anik Deb, “Prospects of Solar Energy in Bangladesh,” IOSR Journal of Electrical and Electronics Engineering, vol. 4, no. 5, pp. 46–57, 2013, issn: 23203331. doi: 10.9790/1676-0454657. [22] M. A. Haghghi, S. G. Holagh, S. M. Pesteei, A. Chitsaz, and F. Talati, “On the performance, economic, and environmental assessment of integrating a solar-based heating system with conventional heating equipment; a case study,” Thermal Science and Engineering Progress, vol. 13, no. June, p. 100 392, 2019, issn: 24519049. doi: 10.1016/j.tsep.2019.100392. [23] H. Schweiger, J. Farinha Mendes, N. Benz Bayr, K. Hennecke, G. Prieto, M. Cus´ı, and H. Gonc¸alves, “a State of the Art Review for Spain and Portugal,” [24] S. A. Kalogirou, “Parabolic trough collectors for industrial process heat in Cyprus,” Energy, vol. 27, no. 9, pp. 813–830, 2002, issn: 03605442. doi: 10. 1016/S0360-5442(02)00018-X. [25] S. Kalogirou, “The potential of solar industrial process heat applications,” Applied Energy, vol. 76, no. 4, pp. 337–361, Dec. 2003, issn: 03062619. doi: 10.1016/S0306-2619(02)00176-9. [26] S. A. Kalogirou, Solar thermal collectors and applications, 3. 2004, vol. 30, pp. 231–295, isbn: 3572240646. doi: 10.1016/j.pecs.2004.02.001. [27] M. Fatouh, M. Nabil, E. Mahmoud, and M. K. Mahmoud, “Performance of a solar thermal parabolic trough concentrator for industrial process heat (IPH) BIBLIOGRAPHY 95 applications in Egypt,” International Solar Energy Conference, no. March 2003, pp. 269–278, 2003. doi: 10.1115/ISEC2003-44007. [28] C. Vannoni, R. Battisti, and S. Drigo, “Potential for solar heat in indutrial processes. IEA SHC Task 33 and and SolarPACES Task IV: Solar heat for industrial processes.,” Iea, pp. 1–21, 2008. [29] V. McLeod, J. Annas, W. Stein, and J. Hinkley, “Application of solar process heat to the commercial & industrial sectors,” Sydney, Australia, 2005. [30] E. Taibi, D. Gielen, and M. Bazilian, “The potential for renewable energy in industrial applications,” Renewable and Sustainable Energy Reviews, vol. 16, no. 1, pp. 735–744, 2012. [31] A. K. Sharma, C. Sharma, S. C. Mullick, and T. C. Kandpal, “Carbon mitigation potential of solar industrial process heating: Paper industry in India,” Journal of Cleaner Production, vol. 112, pp. 1683–1691, Jan. 2016, issn: 09596526. doi: 10.1016/j.jclepro.2015.04.093. [32] A. K. Sharma, C. Sharma, S. C. Mullick, and T. C. Kandpal, “Potential of solar energy utilization for process heating in paper industry in india: A preliminary assessment,” Energy Procedia, vol. 79, pp. 284–289, 2015. [33] A. Uppal and J. P. Kesari, “Solar Industrial Process Heat in Indian Automobile Industry,” International Journal of Latest Technology in Engineering, Management & Applied Science-IJLTEMAS, vol. 4, no. 10, pp. 117–123, 2015. [34] N. S. Suresh and B. S. Rao, “Solar energy for process heatingA case study of select Indian industries,” Journal of Cleaner Production, vol. 151, pp. 439– 451, May 2017, issn: 09596526. doi: 10.1016/j.jclepro.2017.02.190. BIBLIOGRAPHY 96 [35] T. Jia, J. Huang, R. Li, P. He, and Y. Dai, Status and prospect of solar heat for industrial processes in China, Jul. 2018. doi: 10.1016/j.rser.2018.03.077. [36] C. Lauterbach, Potential , system analysis and preliminary design of low-temperature solar process heat systems. 2014, isbn: 9783862197422. [37] A. K. Sharma, C. Sharma, S. C.Mullick, and T. C. Kandpal, “Potential of solar industrial process heating in dairy industry in India and consequent carbon mitigation,” Journal of Cleaner Production, vol. 140, pp. 714–724, Jan. 2017, issn: 09596526. doi: 10.1016/j.jclepro.2016.07.157. [38] M. Kirkham, “Solar Radiation, Black Bodies, Heat Budget, and Radiation Balance,” in Principles of Soil and PlantWater Relations, Elsevier, Jan. 2014, pp. 453– 472. doi: 10.1016/b978-0-12-420022-7.00025-2. [39] Fundamentals of Heat and Mass Transfer - Theodore L. Bergman, Frank P. Incropera, David P. DeWitt, Adrienne S. Lavine - Google Books. [40] Horace de saussure and his hot boxes of the 1700’s. [Online]. Available: http: //solarcooking.org/saussure.htm (visited on 12/26/2020). [41] Solar Collection - Photovoltaic Solar Thermal. [Online]. Available: https:// www.apricus.com/Solar-Collection.html (visited on 12/18/2020). [42] First photovoltaic Devices—PVEducation. [Online]. Available: https://www. pveducation.org/pvcdrom/manufacturing-si-cells/first-photovoltaicdevices (visited on 12/06/2020). [43] Sterling Engine. [Online]. Available: https://www.cse.iitk.ac.in/users/ amit/courses/371/abhishe/main.html/ (visited on 12/26/2020). BIBLIOGRAPHY 97 [44] History of Photovoltaics (PV) - True South Solar. [Online]. Available: https: //truesouthsolar.net/2019-9-30-history-of-photovoltaics/ (visited on 12/26/2020). [45] A Brief History of Solar Panels — Sponsored — Smithsonian Magazine. [Online]. Available: https://www.smithsonianmag.com/sponsored/briefhistory- solar-panels-180972006/ (visited on 12/26/2020). [46] A. Einstein, “Concerning an heuristic point of view toward the emission and transformation of light,” Annalen Phys., vol. 17, pp. 132–148, 1905. [47] A Century of Innovation: Twenty Engineering Achievements that Transformed ... - Google Books, William J. Bailley of the Carnegie Steel Company. (visited on 12/26/2020). [48] Photovoltaics - Historical Development. [Online]. Available: http : / / www . pvresources.com/en/introduction/history.php (visited on 12/26/2020). [49] The Roman Baths and Solar Heating — Solar House History. [Online]. Available: http://solarhousehistory.com/blog/2014/1/19/the- romanbaths- and-solar-heating (visited on 12/27/2020). [50] Solar water heaters in California, 1891–1930 (Journal Article) — OSTI.GOV. [Online]. Available: https://www.osti.gov/biblio/6772173 (visited on 12/27/2020). [51] J. Gong and K. Sumathy, “Active solar water heating systems,” in Advances in Solar Heating and Cooling, Elsevier Inc., Jun. 2016, pp. 203–224, isbn: 9780081003022. doi: 10.1016/B978-0-08-100301-5.00009-6. BIBLIOGRAPHY 98 [52] Hirst and Eric, “A golden thread: 2500 years of solar architecture and technology : by Ken Butti and John Perlin Cheshire Books, distributed by Van Nostrand Reinhold Company, New York and London, 1980, 304 pp, [pound sign]11.95,” Energy Policy, vol. 9, no. 2, pp. 167–167, 1981. [53] Japan: A “Boom and Bust“ Solar Thermal Market — Solarthermalworld. [Online]. Available: https : / / www . solarthermalworld . org / news / japan - boom-and-bust-solar-thermal-market (visited on 12/27/2020). [54] G. A. Florides, S. A. Kalogirou, S. A. Tassou, and L. Wrobel, “Modelling, simulation and warming impact assessment of a domestic-size absorption solar cooling system,” Applied thermal engineering, vol. 22, no. 12, pp. 1313– 1325, 2002. [55] Spanish Power Tower Supplies 24 Hours of Electricity. [Online]. Available: https: //www.powermag.com/spanish-power-tower-supplies-24-hours-ofelectricity/ (visited on 12/27/2020). [56] Solar energy: principles and possibilities on JSTOR. [Online]. Available: https: //www.jstor.org/stable/43424235?seq=1 (visited on 12/18/2020). [57] A. Kumar, N. Gupta, and V. Gupta, “A Comprehensive Review on Grid- TiedSolar Photovoltaic System,” Journal of Green Engineering, vol. 7, no. 1, pp. 213–254, Jan. 2017, issn: 1904-4720. doi: 10.13052/jge1904- 4720. 71210. [58] (PDF) Review on Impact of Installing the Solar Tracking System Its Challenges and Types. [Online]. Available: https://www.researchgate.net/publication/ 348161146 (visited on 03/18/2021). BIBLIOGRAPHY 99 [59] T. B. Gorji and A. Ranjbar, “A review on optical properties and application of nanofluids in direct absorption solar collectors (dascs),” Renewable and Sustainable Energy Reviews, vol. 72, pp. 10–32, 2017. [60] M. J. Muhammad, I. A. Muhammad, N. A. C. Sidik, M. N. A. W. M. Yazid, R. Mamat, and G. Najafi, “The use of nanofluids for enhancing the thermal performance of stationary solar collectors: A review,” Renewable and Sustainable Energy Reviews, vol. 63, pp. 226–236, 2016. [61] C. A. Ramos, A. N. Alcaso, and A. J. Cardoso, “Photovoltaic-thermal (PVT) technology: Review and case study,” in IOP Conference Series: Earth and Environmental Science, vol. 354, Institute of Physics Publishing, Oct. 2019, p. 012 048. doi: 10 . 1088 / 1755 - 1315 / 354 / 1 / 012048. [Online]. Available: https : //iopscience.iop.org/article/10.1088/1755-1315/354/1/012048% 20https://iopscience.iop.org/article/10.1088/1755-1315/354/1/ 012048/meta. [62] A. Steinfeld and R. Palumbo, “Solar Thermochemical Process Technology,” in Encyclopedia of Physical Science and Technology, Elsevier, 2003, pp. 237– 256. doi: 10.1016/B0-12-227410-5/00698-0. [Online]. Available: https: //linkinghub.elsevier.com/retrieve/pii/B0122274105006980. [63] H. Jin and H. Hong, “Hybridization of concentrating solar power (CSP) with fossil fuel power plants,” in Concentrating Solar Power Technology, Elsevier, Jan. 2012, pp. 395–420. doi: 10.1533/9780857096173.2.395. [64] A. Luzzi and K. Lovegrove, “Solar Thermal Power Generation,” in Encyclopedia of Energy, Elsevier, Jan. 2004, pp. 669–683. doi: 10.1016/B0-12-176480- X/00531-3. BIBLIOGRAPHY 100 [65] R. Senthil Kumar, Electrical energy generation , utilisation and conversion. Apr. 2018. [66] F. Asdrubali and U. Desideri, Handbook of energy efficiency in buildings: A life cycle approach. Elsevier, Jan. 2018, pp. 1–836, isbn: 9780128128176. doi: 10.1016/C2016-0-02638-4. [67] ASHRAE, HVAC systems and equipment. chapter, 1996, vol. 39. [68] Mathematical modelling of nanofluid-based direct absorption solar collectors. [Online]. Available: https://www.researchgate.net/publication/327013209% 7B%5C_%7DMathematical%7B%5C_%7Dmodelling%7B%5C_%7Dof%7B%5C_ %7Dnanofluid-based%7B%5C_%7Ddirect%7B%5C_%7Dabsorption%7B%5C_ %7Dsolar%7B%5C_%7Dcollectors (visited on 03/18/2021). [69] C. Eaton, H. B. S. Energy, and u. 1975, “The use of moderate vacuum environments as a means of increasing the collection efficiencies and operating temperatures of flat-plate solar collectors,” Elsevier, [70] N. Benz, N. Benz, and T. Beikircher, “HIGH EFFICIENCY EVACUATED FLATPLATE SOLAR COLLECTOR FOR † PROCESS STEAM PRODUCTION ‡,” Elsevier, vol. 65, no. 2, pp. 111–118, 1999. doi: 10.1016/S0038-092X(98) 00122-4. [71] C. Benvenuti, Evacuable flat panel solar collector, US Patent 7,810,491, Oct. 2010. [72] R. Moss and S. Shire, “Design and performance of evacuated solar collector microchannel plates,” EuroSun 2014, doi: 10.18086/eurosun.2014.16.16. BIBLIOGRAPHY 101 [73] G. S. F. Shire, R. W. Moss, P. Henshall, F. Arya, P. C. Eames, and T. Hyde, “Development of an Efficient Low- and Medium-Temperature Vacuum Flat- Plate Solar Thermal Collector,” in Renewable Energy in the Service of Mankind Vol II, Springer International Publishing, 2016, pp. 859–866. doi: 10.1007/ 978-3-319-18215-5{\_}78. [74] F. Calise, M. Dentice, G. Ferruzzi, A. Palombo, and M. Scarpellino, “Dynamic simulation of a novel non-concentrating solar heating and cooling system,” 10th Conference on Sustainable Development of Energy,Water and Environment Systems, Sep. 2015. [75] H. Tabor, “Stationary mirror systems for solar collectors,” Solar Energy, vol. 2, no. 3-4, pp. 27–33, 1958, issn: 0038092X. doi: 10 . 1016 /0038 - 092x(58 ) 90051-3. [76] H. Hinterberger and R.Winston, “Efficient light coupler for threshold ˇcerenkov counters,” Review of Scientific Instruments, vol. 37, no. 8, pp. 1094–1095, 1966. [77] M. Umair, A. Akisawa, and Y. Ueda, “Optimum settings for a compound parabolic concentrator with wings providing increased duration of effective temperature for solar-driven systems: A case study for Tokyo,” Energies, vol. 7, no. 1, pp. 28–42, 2014, issn: 19961073. doi: 10.3390/en7010028. [78] P. Eames and B. Norton, “Detailed parametric analyses of heat transfer in cpc solar energy collectors,” Solar Energy, vol. 50, no. 4, pp. 321–338, 1993. BIBLIOGRAPHY 102 [79] P. Eames and B. Norton, “Thermal and optical consequences of the introduction of baffles into compound parabolic concentrating solar energy collector cavities,” Solar Energy, vol. 55, no. 2, pp. 139–150, 1995. [80] The Fresnel Lens - Cape Hatteras National Seashore (U.S. National Park Service). [Online]. Available: https://www.nps.gov/caha/learn/historyculture/ fresnellens.htm (visited on 01/06/2021). [81] G. C. Prasad, K. Reddy, and T. Sundararajan, “Optimization of solar linear fresnel reflector system with secondary concentrator for uniform flux distribution over absorber tube,” Solar Energy, vol. 150, pp. 1–12, 2017. [82] N. Abed and I. Afgan, “An extensive review of various technologies for enhancing the thermal and optical performances of parabolic trough collectors,” International Journal of Energy Research, vol. 44, no. 7, pp. 5117–5164, Jun. 2020, issn: 0363-907X. doi: 10.1002/er.5271. [83] S. Kalogirou, “Recent patents in solar energy collectors and applications,” Recent Patents on Engineering, vol. 1, no. 1, pp. 23–33, 2007. [84] W. Van Sark and B. Corona, “Concentrating solar power,” in Technological Learning in the Transition to a Low-Carbon Energy System: Conceptual Issues, Empirical Findings, and Use, in Energy Modeling, Elsevier, Jan. 2019, pp. 221– 231, isbn: 9780128187623. doi: 10.1016/B978-0-12-818762-3.00012-1. [85] M. Romero, R. Buck, and J. E. Pacheco, “An update on solar central receiver systems, projects, and technologies,” J. Sol. Energy Eng., vol. 124, no. 2, pp. 98–108, 2002. BIBLIOGRAPHY 103 [86] J. A. Duffie andW. A. Beckman, Solar Engineering of Thermal Processes. 2013, p. 928, isbn: 9780470873663. [87] M. Seco-Nicol´as, M. Alarc´on Garc´ıa, and J. P. Luna-Abad, “Experimental calculation of the mean temperature of flat plate thermal solar collectors,” Results in Engineering, vol. 5, no. September 2019, pp. 1–7, 2020, issn: 25901230. doi: 10.1016/j.rineng.2020.100095. [88] F. Jafarkazemi and E. Ahmadifard, “Energetic and exergetic evaluation of flat plate solar collectors,” Renewable Energy, vol. 56, pp. 55–63, 2013, issn: 09601481. doi: 10.1016/j.renene.2012.10.031. [89] S. A. Kalogirou, Solar Energy Engineering: Processes and Systems: Second Edition. 2014, pp. 1–819, isbn: 9780123972705. doi: 10.1016/C2011-0-07038- 2. [90] M. Bolognese, D. Viesi, R. Bartali, and L. Crema, “Modeling study for lowcarbon industrial processes integrating solar thermal technologies. A case study in the Italian Alps: The Felicetti Pasta Factory,” Solar Energy, vol. 208, no. January, pp. 548–558, 2020, issn: 0038092X. doi: 10.1016/j.solener. 2020.07.091. [91] J. L. Garc´ıa, C. J. Porras-Prieto, R. M. Benavente, M. T. G´omez-Villarino, and F. R. Mazarr´on, “Profitability of a solar water heating system with evacuated tube collector in the meat industry,” Renewable Energy, vol. 131, pp. 966– 976, 2019, issn: 18790682. doi: 10.1016/j.renene.2018.07.113. [92] A. Al-Salaymeh, I. Al-Rawabdeh, and S. Emran, “Economical investigation of an integrated boiler-solar energy saving system in Jordan,” Energy ConverBIBLIOGRAPHY 104 sion and Management, vol. 51, no. 8, pp. 1621–1628, 2010, issn: 01968904. doi: 10.1016/j.enconman.2009.08.040. [93] Grid Liquid Flat Plate Solar Collectors - Technical Specifications. [Online]. Available: http://www.thermo-dynamics.com/technical_specs/G_series_ technical.html (visited on 04/01/2020). [94] Global Solar Atlas - Downloads. [Online]. Available: https://globalsolaratlas. info/downloads/bangladesh (visited on 08/07/2019). [95] Renewables.ninja. [Online]. Available: https : / / www . renewables . ninja/ (visited on 06/28/2020). [96] S. Kumar and S. C.Mullick, “Wind heat transfer coefficient in solar collectors in outdoor conditions,” Solar Energy, vol. 84, no. 6, pp. 956–963, 2010, issn: 0038092X. doi: 10.1016/j.solener.2010.03.003. [97] E. Sartori, “Convection coefficient equations for forced air flow over flat surfaces,” Solar Energy, vol. 80, no. 9, pp. 1063–1071, 2006, issn: 0038092X. doi: 10.1016/j.solener.2005.11.001. [98] T. Chow, K. Fong, A. Chan, and Z. Lin, “Potential application of a centralized solar water-heating system for a high-rise residential building in hong kong,” Applied Energy, vol. 83, no. 1, pp. 42–54, 2006, issn: 0306-2619. doi: https://doi.org/10.1016/j.apenergy.2005.01.006. [Online]. Available: https : / / www . sciencedirect . com / science / article / pii / S0306261905000048. [99] Y. Hang, M. Qu, and F. Zhao, “Economic and environmental life cycle analysis of solar hot water systems in the united states,” Energy and Buildings, BIBLIOGRAPHY 105 vol. 45, pp. 181–188, 2012, issn: 0378-7788. doi: https://doi.org/10. 1016/j.enbuild.2011.10.057. [Online]. Available: https://www.sciencedirect. com/science/article/pii/S0378778811005202. en_US
dc.identifier.uri http://hdl.handle.net/123456789/1380
dc.description Supervised by Sayedus Salehin, Assistant Professor, Department of Mechanical and Production Engineering(MPE), Islamic University of Technology (IUT), Board Bazar, Gazipur-1704, Bangladesh. en_US
dc.description.abstract Considering the energy crisis and environmental concerns, green energy technologies are being focused to harness energy from every available source. Extraction of thermal energy using solar collector is one such technology that is very promising to be used in the industrial sector as it is one of the largest energy-consuming sectors which mainly consumes thermal energy. Textile industries are one of the most common industrial sectors in Bangladesh requiring a large amount of hot water in different processes. No existing literature is found exploring the potential of integrating solar thermal collectors in the textile industry of Bangladesh. In this thesis, the feasibility of using solar thermal energy in the textile industries of Bangladesh is studied from thermal, economic and environmental perspectives. For this purpose, a review of solar collectors is carried out to select the appropriate solar collector analyzing different parameters e.g. weather condition, heat demand, and economical aspect. Flat plate solar collector is selected for this work and the modeling of the collector is done extensively explaining the design parameters, assumptions and relevant calculations. MATLAB code is developed and validated with existing literature to analyze the thermal performance of the collector varying different parameters. Economic and environmental analyses are also conducted since the economic anal- 3 4 ysis is one of the most crucial parts of the feasibility study and environmental analysis helps to determine the environmental impact of installing solar thermal collector in the system. From this study, it is found that integration of solar collector can save up to 14.7% energy in the summer and approximately 9% in the winter for the system studied in this work which leads to a payback period of 13.58 years. From the environmental analysis, it is found that the amount of CO2 emission that can be reduced is around 2.8 tons per day in summer and 1.65 tons per day in winter indicating this to be environment-friendly solution from Bangladeshi context. en_US
dc.language.iso en en_US
dc.publisher Department of Mechanical and Production Engineering (MPE),Islamic University of Technology(IUT), Board Bazar, Gazipur, Bangladesh en_US
dc.title Techno-Economic and Environmental Feasibility Analysis of Solar water Heating System for a Textile Industry In Bangladesh en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics