dc.identifier.citation |
[1] J. Alberto Dopazo et al. \Theoretical analysis of a CO2-NH3 cascade refrigera- tion system for cooling applications at low temperatures". In: Applied Thermal Engineering 29.8-9 (2009), pp. 1577{1583. issn: 13594311. doi: 10.1016/j. applthermaleng.2008.07.006. url: http://dx.doi.org/10.1016/j. applthermaleng.2008.07.006. [2] Chandra Prakash Arora. Refrigeration and air conditioning. Tata McGraw- Hill Education, 2000. [3] Faraz Aziz, Mohammad Saad Salim, and Man Hoe Kim. \Performance analysis of high temperature cascade organic Rankine cycle coupled with water heating system". In: Energy 170 (2019), pp. 954{966. issn: 03605442. doi: 10.1016/ j.energy.2018.12.210. url: https://doi.org/10.1016/j.energy.2018. 12.210. [4] David E Bearint. \Cascade absorption refrigeration system". In: (Dec. 1969). US Patent 3,483,710. [5] Ian H Bell et al. \Pure and pseudo-pure uid thermophysical property eval- uation and the open-source thermophysical property library CoolProp". In: Industrial & engineering chemistry research 53.6 (2014), pp. 2498{2508. [6] Souvik Bhattacharyya, S. Bose, and J. Sarkar. \Exergy maximization of cas- cade refrigeration cycles and its numerical veri cation for a transcritical CO2- 78 Triple Cascade Refrigeration System C3H8 system". In: International Journal of Refrigeration 30.4 (2007), pp. 624{ 632. issn: 01407007. doi: 10.1016/j.ijrefrig.2006.11.008. [7] Wang Bingming et al. \Experimental investigation on the performance of NH3/CO2 cascade refrigeration system with twin-screw compressor". In: In- ternational Journal of Refrigeration 32.6 (2009), pp. 1358{1365. issn: 01407007. doi: 10.1016/j.ijrefrig.2009.03.008. [8] H Perez- Blanco. \Absorption heat pump performance for di erent types of solutions". In: International Journal of Refrigeration 7.2 (1984), pp. 115{122. [9] James M. Calm. \The next generation of refrigerants - Historical review, considerations, and outlook". In: International Journal of Refrigeration 31.7 (2008), pp. 1123{1133. issn: 01407007. doi: 10.1016/j.ijrefrig.2008.01. 013. [10] Yunus A Cengel and Michael A Boles. Thermodynamics: An Engineering Ap- proach 6th Editon (SI Units). The McGraw-Hill Companies, Inc., New York, 2007. [11] Jung-Ho Cho and Yu-Mi Kim. \A Simulation Study on the Cascade Refriger- ation Cycle for the Liquefaction of the Natural Gas [2]: An Application to the Multistage Cascade Refrigeration Cycle". In: Journal of the Korea Academia- Industrial cooperation Society 12.2 (2011), pp. 1013{1019. issn: 1975-4701. doi: 10.5762/kais.2011.12.2.1013. [12] Pongsid Srikhirin; Satha Aphornratana; Supachart Chungpaibulpatana. \A review of absorption refrigeration technologies". In: Renewable and Sustainable Energy Reviews 5.6471 (4 2001), pp. 343{372. issn: 1364-0321. doi: 10.1016/ S1364-0321(01)00003-X.. [13] Canan Cimsit and Ilhan Tekin Ozturk. \Analysis of compression-absorption cascade refrigeration cycles". In: Applied Thermal Engineering 40 (2012), Chapter 5 Faruque, Nabil 79 Triple Cascade Refrigeration System pp. 311{317. issn: 13594311. doi: 10.1016/j.applthermaleng.2012.02. 035. [14] Canan Cimsit, Ilhan Tekin Ozturk, and Olcay Kincay. \Thermoeconomic opti- mization of LiBr/H2O-R134a compression-absorption cascade refrigeration cy- cle". In: Applied Thermal Engineering 76 (2015), pp. 105{115. issn: 13594311. doi: 10.1016/j.applthermaleng.2014.10.094. [15] RG Craig, HJ Slesnick, and FA Peyton. \Application of 17-7 precipitation- hardenable stainless steel in dentistry". In: Journal of dental research 44.3 (1965), pp. 587{595. [16] Peizhe Cui et al. \Energy, exergy, and economic (3E) analyses and multi- objective optimization of a cascade absorption refrigeration system for low- grade waste heat recovery". In: Energy Conversion and Management 184.Oc- tober 2018 (2019), pp. 249{261. issn: 01968904. doi: 10.1016/j.enconman. 2019.01.047. [17] Kai Du et al. \A study on the cycle characteristics of an auto-cascade re- frigeration system". In: Experimental Thermal and Fluid Science 33.2 (2009), pp. 240{245. issn: 08941777. doi: 10.1016/j.expthermflusci.2008.08. 006. [18] Jos e Fern andez-Seara, Jaime Sieres, and Manuel V azquez. \Compression-absorption cascade refrigeration system". In: Applied Thermal Engineering 26.5-6 (Apr. 2006), pp. 502{512. issn: 13594311. doi: 10.1016/j.applthermaleng.2005. 07.015. [19] Rabah Gomri. \Second law comparison of single e ect and double e ect vapour absorption refrigeration systems". In: Energy Conversion and Management 50.5 (2009), pp. 1279{1287. issn: 01968904. doi: 10 . 1016 / j . enconman . 2009.01.019. 80 Chapter 5 Faruque, Nabil Triple Cascade Refrigeration System [20] Wei Han et al. \New hybrid absorption-compression refrigeration system based on cascade use of mid-temperature waste heat". In: Applied Energy 106 (2013), pp. 383{390. issn: 03062619. doi: 10.1016/j.apenergy.2013.01.067. [21] K. Harby. \Hydrocarbons and their mixtures as alternatives to environmental unfriendly halogenated refrigerants: An updated overview". In: Renewable and Sustainable Energy Reviews 73.January (2017), pp. 1247{1264. issn: 18790690. doi: 10.1016/j.rser.2017.02.039. [22] Yijian He and Guangming Chen. \Experimental study on an absorption re- frigeration system at low temperatures". In: International Journal of Ther- mal Sciences 46.3 (2007), pp. 294{299. issn: 12900729. doi: 10 . 1016 / j . ijthermalsci.2006.06.002. [23] Ilhami Horuz and Bener Kurt. \Absorption heat transformers and an indus- trial application". In: Renewable Energy 35.10 (2010), pp. 2175{2181. issn: 09601481. doi: 10.1016/j.renene.2010.02.025. [24] M. Hosoz and H. M. Ertunc. \Arti cial neural network analysis of an au- tomobile air conditioning system". In: Energy Conversion and Management 47.11-12 (2006), pp. 1574{1587. issn: 01968904. doi: 10.1016/j.enconman. 2005.08.008. [25] Krasimir Ivanov and Nely Georgieva. \Analysis of the Construction and Op- eration of the Cascade Refrigeration". In: Applied Researches in Technics, Technologies and Education 5.1 (2017), pp. 36{43. issn: 13148788. doi: 10. 15547/artte.2017.01.005. [26] Vaibhav Jain, S. S. Kachhwaha, and Gulshan Sachdeva. \Thermodynamic performance analysis of a vapor compression-absorption cascaded refrigeration system". In: Energy Conversion and Management 75 (2013), pp. 685{700. issn: 01968904. doi: 10.1016/j.enconman.2013.08.024. Chapter 5 Faruque, Nabil 81 Triple Cascade Refrigeration System [27] Nicole Johnson, Jonas Baltrusaitis, and William L. Luyben. \Design and con- trol of a cryogenic multi-stage compression refrigeration process". In: Chemi- cal Engineering Research and Design 121 (2017), pp. 360{367. issn: 02638762. doi: 10.1016/j.cherd.2017.03.018. [28] Satish G. Kandlikar. \New Absorber Heat Recovery Cycle To Improve Cop of Aqua-Ammonia Absorption Refrigeration System." In: ASHRAE Transactions 88.pt 1 (1982), pp. 141{158. issn: 00012505. [29] Mehmet Kanoglu, Ibrahim Dincer, and Marc A Rosen. \Performance analysis of gas liquefaction cycles". In: International journal of energy research 32.1 (2008), pp. 35{43. [30] Maryam Khoubnasabjafari et al. \Contribution of Iranian chemists in research activities , on the occasion of the International Year of Chemistry Resumen Contribuciones investigativas de los qu micos iran es , en ocasi on". In: 40.2 (2011), pp. 240{260. [31] A. Kilicarslan. \An experimental investigation of a di erent type vapor com- pression cascade refrigeration system". In: Applied Thermal Engineering 24.17- 18 (2004), pp. 2611{2626. issn: 13594311. doi: 10.1016/j.applthermaleng. 2004.04.004. [32] A. Kilicarslan and M. Hosoz. \Energy and irreversibility analysis of a cascade refrigeration system for various refrigerant couples". In: Energy Conversion and Management 51.12 (2010), pp. 2947{2954. issn: 01968904. doi: 10.1016/ j.enconman.2010.06.037. [33] B. V. Kosoy. \Thermodynamics and Design Principles of Refrigeration Sys- tems". In: Low Temperature and Cryogenic Refrigeration (2003), pp. 5{22. doi: 10.1007/978-94-010-0099-4_2. 82 Chapter 5 Faruque, Nabil Triple Cascade Refrigeration System [34] Tzong Shing Lee, Cheng Hao Liu, and Tung Wei Chen. \Thermodynamic analysis of optimal condensing temperature of cascade-condenser in CO2/NH3 cascade refrigeration systems". In: International Journal of Refrigeration 29.7 (Nov. 2006), pp. 1100{1108. issn: 01407007. doi: 10 . 1016 / j . ijrefrig . 2006.03.003. [35] Youcai Liang et al. \Investigation of a cascade waste heat recovery system based on coupling of steam Rankine cycle and NH3-H2O absorption refrig- eration cycle". In: Energy Conversion and Management 166.April (2018), pp. 697{703. issn: 01968904. doi: 10.1016/j.enconman.2018.04.064. [36] William L. Luyben. \Refrigerant selection for di erent cryogenic tempera- tures". In: Computers and Chemical Engineering 126 (2019), pp. 241{248. issn: 00981354. doi: 10.1016/j.compchemeng.2019.03.030. [37] M. Ma , S. M.Mousavi Naeynian, and M. Amidpour. \Exergy analysis of mul- tistage cascade low temperature refrigeration systems used in ole n plants". In: International Journal of Refrigeration 32.2 (2009), pp. 279{294. issn: 01407007. doi: 10.1016/j.ijrefrig.2008.05.008. [38] R. Maryami and A. A. Dehghan. \An exergy based comparative study between LiBr/water absorption refrigeration systems from half e ect to triple e ect". In: Applied Thermal Engineering 124 (2017), pp. 103{123. issn: 13594311. doi: 10.1016/j.applthermaleng.2017.05.174. [39] Luiz Henrique Parolin Massuchetto et al. \Thermodynamic performance eval- uation of a cascade refrigeration system with mixed refrigerants: R744/R1270, R744/R717 and R744/RE170". In: International Journal of Refrigeration 106 (2019), pp. 201{212. [40] A. S. Mehr, V. Zare, and S. M.S. Mahmoudi. \Standard GAX versus hybrid GAX absorption refrigeration cycle: From the view point of thermoeconomics". Chapter 5 Faruque, Nabil 83 Triple Cascade Refrigeration System In: Energy Conversion and Management 76 (2013), pp. 68{82. issn: 01968904. doi: 10.1016/j.enconman.2013.07.016. [41] Mehdi Mehrpooya, Mehdi Omidi, and Ali Vatani. \Novel mixed uid cas- cade natural gas liquefaction process con guration using absorption refriger- ation system". In: 98 (2016), pp. 591{604. issn: 1359-4311. doi: 10.1016/j. applthermaleng.2015.12.032. [42] Antonio Messineo and Domenico Panno. \Performance Evaluation of Cascade Refrigeration Systems Using Di erent Refrigerants". In: International Journal of Air-Conditioning and Refrigeration 20.03 (2012), p. 1250010. issn: 2010- 1325. doi: 10.1142/s2010132512500101. [43] Thomas Midgley and Albert L. Henne. \Organic Fluorides as Refrigerants". In: Industrial and Engineering Chemistry 22.5 (1930), pp. 542{545. issn: 00197866. doi: 10.1021/ie50245a031. [44] R S Mishra. \Thermal optimization of three stage vapour compression cascade refrigeration system using entropy generation principle for reducing global warming and ozone depletion using ecofriendly refrigerants". In: International Journal of Research in Engineering and Innovation 1.5 (2017), pp. 68{72. [45] Adri an Mota-Babiloni et al. \Ultralow-temperature refrigeration systems: Con- gurations and refrigerants to reduce the environmental impact". In: Interna- tional Journal of Refrigeration 111 (2020), pp. 147{158. [46] Seyed Ali Mousavi and Mehdi Mehrpooya. \A comprehensive exergy-based evaluation on cascade absorption-compression refrigeration system for low temperature applications - exergy, exergoeconomic, and exergoenvironmental assessments". In: Journal of Cleaner Production 246 (2020). issn: 09596526. doi: 10.1016/j.jclepro.2019.119005. 84 Chapter 5 Faruque, Nabil Triple Cascade Refrigeration System [47] M.V.Krishna. Murthy S.Srinivasa Murthy. \Experiments on a cascaded R11{R12 vapour compression system for cogeneration of heat and cold." In: 5.6 (1985), pp. 519{526. issn: 01987593. doi: 10.1016/0198-7593(85)90219-X. [48] Nazreen Begum Najibullah Khan et al. \A case study: Application of en- ergy and exergy analysis for enhancing the process e ciency of a three stage propane pre-cooling cycle of the cascade LNG process". In: Journal of Natural Gas Science and Engineering 29 (2016), pp. 125{133. issn: 18755100. doi: 10.1016/j.jngse.2015.12.034. [49] Bhavesh Patel, Nishith B. Desai, and Surendra Singh Kachhwaha. \Opti- mization of waste heat based organic Rankine cycle powered cascaded va- por compression-absorption refrigeration system". In: Energy Conversion and Management 154.July (2017), pp. 576{590. issn: 01968904. doi: 10.1016/j. enconman.2017.11.045. [50] Rotchana Prapainop and K O Suen. \E ects of refrigerant properties on re- frigerant performance comparison: A review". In: International Journal of En- gineering Research and Applications 2.4 (2012), pp. 486{493. [51] T Hari Prasad, K Poli Reddy, and D Raghu Rami Reddy. \Exergy Analysis of Vapour Compression Refrigeration". In: International Journal of Applied Engineering Research 4.12 (2009), pp. 2505{2526. [52] H. Quack. \Theory of cascade refrigeration". In: AIP Conference Proceedings 1434.57 (2012), pp. 783{789. issn: 0094243X. doi: 10.1063/1.4706991. [53] Tahir A.H. Ratlamwala and Muhammad Abid. \Performance analysis of so- lar assisted multi-e ect absorption cooling systems using nano uids: A com- parative analysis". In: International Journal of Energy Research 42.9 (2018), pp. 2901{2915. issn: 1099114X. doi: 10.1002/er.3980. Chapter 5 Faruque, Nabil 85 Triple Cascade Refrigeration System [54] Eric B Ratts and J Steven Brown. \A generalized analysis for cascading sin- gle uid vapor compression refrigeration cycles using an entropy generation minimization method". In: International Journal of Refrigeration 23.5 (2000), pp. 353{365. [55] Jahar Sarkar, Souvik Bhattacharyya, and Arjun Lal. \Selection of suitable natural refrigerants pairs for cascade refrigeration system". In: Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 227.5 (2013), pp. 612{622. issn: 09576509. doi: 10.1177/0957650913487730. [56] M. Sivakumar and P. Somasundaram. \Exergy and energy analysis of three stage auto refrigerating cascade system using Zeotropic mixture for sustainable development". In: Energy Conversion and Management 84 (2014), pp. 589{ 596. issn: 01968904. doi: 10.1016/j.enconman.2014.04.076. [57] Da-Wen Sun, Ian W Eames, and Satha Aphornratana. \Evaluation of a novel combined ejector-absorption refrigeration cycle|I: computer simulation". In: International Journal of Refrigeration 19.3 (1996), pp. 172{180. [58] Zhili Sun et al. \Options of low Global Warming Potential refrigerant group for a three-stage cascade refrigeration system". In: International Journal of Refrigeration 100 (2019), pp. 471{483. issn: 01407007. doi: 10 . 1016 / j . ijrefrig.2018.12.019. [59] Alessandro Trigilio, Alexis Bouza, and Sabrina Di Scipio. \Modelling and sim- ulation of natural gas liquefaction process". In: Advances in Natural Gas Tech- nology (2012). [60] Yingjie Xu et al. \A novel low-temperature absorption-compression cascade refrigeration system". In: Applied Thermal Engineering 75 (2015), pp. 504{ 512. issn: 13594311. doi: 10.1016/j.applthermaleng.2014.10.043. |
en_US |
dc.description.abstract |
In recent years, concern about global warming and ozone layer depletion has been
growing. Increasing attention is being given to refrigerants used in refrigeration
and air-conditioning systems as they have a signi cant contribution towards these
environmental issues. As industries and di erent chemical plants are increasing day
by day, it is becoming a challenge for researchers to nd suitable refrigerants that
will be safe for the environment and maintain the desired performance. In the case
of di erent ultra-low temperature (-100oC to -150oC) applications (e.g., LNG, LPG
liquefaction, cryogenic engineering, food, and medicine storage), it is even more
challenging to satisfy environmental conditions and performance. This study aims
to nd suitable environment-friendly refrigerants and implement them in a triple
cascade refrigeration system (TCRS) for low-temperature application (-100oC to
-150oC). For this purpose, a simulation model for the system was developed and
validated. Based on low global warming potential, and low ozone depletion poten-
tial; eco-friendly hydrocarbon (HC) refrigerants were selected for implementation
in the triple cascade refrigeration system (TCRS). In the lower temperature cir-
cuit (LTC), 1-butene was used as working
uid, and in the higher temperature
circuit (HTC), m-Xylene was used. For the mid-temperature circuit (MTC), trans-
2-butane, n-heptane, n-butane, cis-2-butane were used. To assess the performance
of TCRS, energy analysis and exergy analysis were conducted, and analyzed. The
results show that 1-butene/heptane/m-Xylene pair gives the best performance in
terms of 1st law e ciency (COP) and 2nd law e ciency (exergy destruction) for
3
Triple Cascade Refrigeration System
low-temperature applications (lower than -100°C). The results obtained from the
simulation model suggests that exergy destruction mainly occurs at the condenser,
hence further studies can be carried out on the condenser to increase the overall
COP. Further experimental studies can be carried out to assess the feasibility of
utilizing the proposed refrigerants pair for low-temperature applications. |
en_US |