dc.identifier.citation |
[1] M. L. Chandravanshi and A. K. Mukhopadhyay, “Modal analysis of structural vibration,” ASME Int. Mech. Eng. Congr. Expo. Proc., vol. 14, no. November 2013, 2013, doi: 10.1115/IMECE2013-62533. [2] K. A. Ramsey, “Experimental modal analysis, structural modifications and FEM analysis on a desktop computer,” S V Sound Vib., vol. 17, no. 2, pp. 19–27, 1983. [3] M. Narwariya, A. Choudhury, and A. K. Sharma, “Harmonic analysis of moderately thick symmetric cross-ply laminated composite plate using FEM,” Adv. Comput. Des., vol. 3, no. 2, pp. 113–132, 2018, doi: 10.12989/acd.2018.3.2.113. [4] H. Ning, W. Zhigang, J. Chengyu, and Z. Bing, “Finite element method analysis and control stratagem for machining deformation of thin-walled components,” vol. 139, pp. 332–336, 2003, doi: 10.1016/S0924-0136(03)00550-8. [5] M. Petyt, “Introduction to finite element vibration analysis, second edition,” Introd. to Finite Elem. Vib. Anal. Second Ed., vol. 9780521191, pp. 1–500, 2010, doi: 10.1017/CBO9780511761195. [6] Y. Yu, S. Zhang, H. Li, X. Wang, and Y. Tang, “Modal and Harmonic Response Analysis of Key Components of Ditch Device Based on ANSYS,” Procedia Eng., vol. 174, pp. 956–964, 2017, doi: 10.1016/j.proeng.2017.01.247. [7] A. S. Elliott and M. H. Richardson, “Virtual experimental modal analysis (VEMA),” Proc. Int. Modal Anal. Conf. - IMAC, vol. 2, pp. 884–890, 1998. [8] C. M. Ramesha, K. G. Abhijith, A. Singh, A. Raj, and C. S. Naik, “Modal Analysis and Harmonic Response Analysis of a Crankshaft,” Int. J. Emerg. Technol. Adv. Eng., vol. 5, no. 6, pp. 323–327, 2015. P a g e | 30 [9] B. G. Hearn and R. B. Testa, “M o d a l analysis for damage detection in structures,” vol. 117, no. 10, pp. 3042–3063, 1992. [10] H. Lv and J. Zhao, “The experimental modal analysis of motorcycle structure,” ICEOE 2011 - 2011 Int. Conf. Electron. Optoelectron. Proc., vol. 2, no. Iceoe, pp. 275–278, 2011, doi: 10.1109/ICEOE.2011.6013233. [11] H. Van Der Auweraer, “Structural dynamics modeling using modal analysis: Applications, trends and challenges,” Conf. Rec. - IEEE Instrum. Meas. Technol. Conf., vol. 3, pp. 1502–1509, 2001, doi: 10.1109/imtc.2001.929456. [12] S. Orhan, “Analysis of free and forced vibration of a cracked cantilever beam,” NDT E Int., vol. 40, no. 6, pp. 443–450, 2007, doi: 10.1016/j.ndteint.2007.01.010. [13] W. Tangsopa and J. Thongsri, “Development of an industrial ultrasonic cleaning tank based on harmonic response analysis,” Ultrasonics, vol. 91, no. July 2018, pp. 68–76, 2019, doi: 10.1016/j.ultras.2018.07.013. [14] L. Bertini, P. Neri, C. Santus, and A. Guglielmo, “One exciter per sector test bench for bladed wheels harmonic response analysis,” Proc. ASME Turbo Expo, vol. 7B-2017, no. June, 2017, doi: 10.1115/GT2017-63628. [15] D. Laxalde, F. Thouverez, and J. P. Lombard, “Forced response analysis of integrally bladed disks with friction ring dampers,” J. Vib. Acoust. Trans. ASME, vol. 132, no. 1, pp. 0110131–0110139, 2010, doi: 10.1115/1.4000763. [16] Y. Ishida and T. Inoue, “Detection of a rotor crack using a harmonic excitation and nonlinear vibration analysis,” J. Vib. Acoust. Trans. ASME, vol. 128, no. 6, pp. 741–749, 2006, doi: 10.1115/1.2346693. [17] C. Villa, J. J. Sinou, and F. Thouverez, “Stability and vibration analysis of a complex flexible rotor bearing system,” Commun. Nonlinear Sci. Numer. Simul., vol. 13, no. 4, pp. 804–821, 2008, doi: 10.1016/j.cnsns.2006.06.012. [18] M. A. Al-Shudeifat, E. A. Butcher, and C. R. Stern, “General harmonic balance solution of a cracked rotor-bearing-disk system for harmonic and sub-harmonic analysis: Analytical and experimental approach,” Int. J. Eng. Sci., vol. 48, no. 10, pp. 921–935, 2010, doi: 10.1016/j.ijengsci.2010.05.012. [19] E. Prestini, “Introduction to harmonic analysis,” Appl. Numer. Harmon. Anal., no. 9781489979872, pp. 25–52, 2016, doi: 10.1007/978-1-4899-7989-6_2. |
en_US |