dc.identifier.citation |
[1] J. Ophir, “Elastography: A quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging, vol. 13, no. 2, pp. 111–134, Apr. 1991, doi: 10.1016/0161-7346(91)90079-w. [2] T. Varghese, “Quasi-Static Ultrasound Elastography,” Ultrasound Clinics, vol. 4, no. 3. NIH Public Access, pp. 323–338, Jul. 2009, doi: 10.1016/j.cult.2009.10.009. [3] H. E. RESINGER, “Radiation pathology.,” J. Iowa State Med. Soc., vol. 52, pp. 404–406, 1962, doi: 10.5005/jp/books/12793_3. [4] K. E and O. J, “A new elastographic method for estimation and imaging of lateral displacements, lateral strains, corrected axial strains and Poisson’s ratios in tissues,” Ultrasound Med. Biol., vol. 24, no. 8, pp. 1183–1199, Oct. 1998, doi: 10.1016/S0301-5629(98)00109-4. [5] M. Bilgen and M. F. Insana, “Deformation models and correlation analysis in elastography,” J. Acoust. Soc. Am., vol. 99, no. 5, pp. 3212–3224, May 1996, doi: 10.1121/1.414865. [6] M. A. Hussain, E. M. Abu Anas, S. K. Alam, S. Y. Lee, and M. K. Hasan, “Direct and gradient-based average strain estimation by using weighted nearest neighbor cross-correlation peaks,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 59, no. 8, pp. 1713–1728, 2012, doi: 10.1109/TUFFC.2012.2376. [7] R. Ahmed et al., “Comparison of windowing effects on elastography images: Simulation, phantom and in vivo studies,” Ultrasonics, vol. 66, pp. 140–153, Mar. 2016, doi: 10.1016/j.ultras.2015.11.001. [8] E. E. Konofagou, T. Varghese, and J. Ophir, “Spectral estimators in elastography,” Ultrasonics, vol. 38, no. 1, pp. 412–416, Mar. 2000, doi: 10.1016/S0041-624X(99)00116-X. [9] M. K. Hasan, E. M. A. Anas, S. K. Alam, and S. Y. Lee, “Direct Mean Strain Estimation for Elastography Using Nearest-Neighbor Weighted Least-Squares Approach in the Frequency Domain,” Ultrasound Med. Biol., vol. 38, no. 10, pp. 1759–1777, Oct. 2012, doi: 10.1016/j.ultrasmedbio.2012.01.026. [10] S. Kaisar Alam, J. Ophir, and T. Varghese, “Elastographic axial resolution criteria: An 73 experimental study,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 47, no. 1, pp. 304–309, 2000, doi: 10.1109/58.818775. [11] H. Rivaz, E. M. Boctor, M. A. Choti, and G. D. Hager, “Ultrasound elastography using three images,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2011, vol. 6891 LNCS, no. PART 1, pp. 371–378, doi: 10.1007/978-3-642-23623-5_47. [12] H. Rivaz, E. M. Boctor, M. A. Choti, and G. D. Hager, “Ultrasound elastography using multiple images,” Med. Image Anal., vol. 18, no. 2, pp. 314–329, Feb. 2014, doi: 10.1016/j.media.2013.11.002. [13] M. O’Donnell, A. R. Skovoroda, B. M. Shapo, and S. Y. Emelianov, “Internal Displacement and Strain Imaging Using Ultrasonic Speckle Tracking,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 41, no. 3, pp. 314–325, 1994, doi: 10.1109/58.285465. [14] K. Hoyt, F. Forsberg, and J. Ophir, “Analysis of a hybrid spectral strain estimation technique in elastography,” Phys. Med. Biol., vol. 51, no. 2, pp. 197–209, Jan. 2006, doi: 10.1088/0031-9155/51/2/001. [15] X. Pan, J. Gao, S. Tao, K. Liu, J. Bai, and J. Luo, “A two-step optical flow method for strain estimation in elastography: Simulation and phantom study,” Ultrasonics, vol. 54, no. 4, pp. 990–996, Apr. 2014, doi: 10.1016/j.ultras.2013.11.010. [16] A. R. Amiri-Simkooei, M. Hosseini-Asl, and A. Safari, “Least squares 2D bi-cubic spline approximation: Theory and applications,” Meas. J. Int. Meas. Confed., vol. 127, pp. 366–378, Oct. 2018, doi: 10.1016/j.measurement.2018.06.005. [17] S. R. Ara et al., “Phase-based direct average strain estimation for elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 60, no. 11, pp. 2266–2283, 2013, doi: 10.1109/TUFFC.2013.6644732. [18] T. Varghese, “Quasi-Static Ultrasound Elastography,” Ultrasound Clin., vol. 4, no. 3, p. 323, Jul. 2009, doi: 10.1016/J.CULT.2009.10.009. [19] I. Céspedes, J. Ophir, and M. Insana, “Theoretical Bounds on Strain Estimation in Elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 42, no. 5, pp. 969–971, 1995, doi: 10.1109/58.464850. 74 [20] J. Y. Kwak and E. K. Kim, “Ultrasound elastography for thyroid nodules: Recent advances,” Ultrasonography, vol. 33, no. 2. Korean Society of Ultrasound in Medicine, pp. 75–82, Feb. 26, 2014, doi: 10.14366/usg.13025. [21] S. Il Hwang, H. J. Lee, S. E. Lee, S. K. Hong, S.-S. Byun, and G. Choe, “Elastographic Strain Index in the Evaluation of Focal Lesions Detected With Transrectal Sonography of the Prostate Gland,” J. Ultrasound Med., vol. 35, no. 5, pp. 899–904, May 2016, doi: 10.7863/ULTRA.15.01071. [22] H. Singh, O. B. Panta, U. Khanal, and R. K. Ghimire, “Renal Cortical Elastography: Normal Values and Variations,” J. Med. Ultrasound, vol. 25, no. 4, p. 215, Dec. 2017, doi: 10.1016/J.JMU.2017.04.003. [23] A. T. Ahuja et al., “Ultrasound of malignant cervical lymph nodes,” Cancer Imaging, vol. 8, no. 1. BioMed Central, pp. 48–56, 2008, doi: 10.1102/1470-7330.2008.0006. [24] S. Iranmakani et al., “A review of various modalities in breast imaging: technical aspects and clinical outcomes,” Egypt. J. Radiol. Nucl. Med. 2020 511, vol. 51, no. 1, pp. 1–22, Apr. 2020, doi: 10.1186/S43055-020-00175-5. [25] K. M. Hiltawsky, M. Krüger, C. Starke, L. Heuser, H. Ermert, and A. Jensen, “Freehand ultrasound elastography of breast lesions: Clinical results,” Ultrasound Med. Biol., vol. 27, no. 11, pp. 1461–1469, 2001, doi: 10.1016/S0301-5629(01)00434-3. [26] I. Céspedes, J. Ophir, H. Ponnekanti, and N. Maklad, “Elastography: Elasticity Imaging Using Ultrasound with Application to Muscle and Breast in Vivo:,” http://dx.doi.org/10.1177/016173469301500201, vol. 15, no. 2, pp. 73–88, Aug. 2016, doi: 10.1177/016173469301500201. [27] B. Mahmood, C. Ewertsen, J. Carlsen, and M. B. Nielsen, “Ultrasound Vascular Elastography as a Tool for Assessing Atherosclerotic Plaques – A Systematic Literature Review,” Ultrasound Int. Open, vol. 2, no. 4, p. E106, Nov. 2016, doi: 10.1055/S-0042-115564. [28] F. Pinto et al., “Imaging in prostate cancer diagnosis: Present role and future perspectives,” Urol. Int., vol. 86, no. 4, pp. 373–382, Jun. 2011, doi: 10.1159/000324515. [29] G. Salomon and J. Schiffmann, “Real-time elastography for the detection of prostate 75 cancer,” Curr. Urol. Rep., vol. 15, no. 3, 2014. [30] T. DJ et al., “Elastography in prostate gland imaging and prostate cancer detection,” Med. Ultrason., vol. 20, no. 4, pp. 515–523, 2018, doi: 10.11152/MU-1655. [31] J. Ophir et al., “Elastography: Ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. Part H J. Eng. Med., vol. 213, no. 3, pp. 203–233, 1999, doi: 10.1243/0954411991534933. [32] S. K. Alam and J. Ophir, “Reduction of signal decorrelation from mechanical compression of tissues by temporal stretching: Applications to elastography,” Ultrasound Med. Biol., vol. 23, no. 1, pp. 95–105, Jan. 1997, doi: 10.1016/S0301-5629(96)00164-0. [33] S. K. Alam, F. L. Lizzi, T. Varghese, E. J. Feleppa, and S. Ramachandran, “Adaptive spectral strain estimators for elastography,” Ultrason. Imaging, vol. 26, no. 3, pp. 131–149, Aug. 2004, doi: 10.1177/016173460402600301. [34] J. Jin, J. Zhang, and Y. Shen, “Adaptive stretch factor method based on moving window for ultrasound elasticity imaging,” Yi Qi Yi Biao Xue Bao/Chinese J. Sci. Instrum., vol. 35, no. 9, pp. 2087–2093, 2014, Accessed: Jun. 28, 2021. [Online]. Available: https://www.researchgate.net/publication/288238024_Adaptive_stretch_factor_method_based_on_moving_window_for_ultrasound_elasticity_imaging. [35] E. Konofagou and J. Ophir, “A new elastographic method for estimation and imaging of lateral displacements, lateral strains, corrected axial strains and Poisson’s ratios in tissues,” Ultrasound Med. Biol., vol. 24, no. 8, pp. 1183–1199, Oct. 1998, doi: 10.1016/S0301-5629(98)00109-4. [36] Z. Z, L. H, and C. Y, “2D ultrasonic elastography with lateral displacement estimation using statistics,” Biomed. Mater. Eng., vol. 24, no. 6, pp. 2783–2791, 2014, doi: 10.3233/BME-141096. [37] J. Jiang and T. J. Hall, “A Coupled Subsample Displacement Estimation Method for Ultrasound-Based Strain Elastography,” Phys. Med. Biol., vol. 60, no. 21, p. 8347, Oct. 2015, doi: 10.1088/0031-9155/60/21/8347. [38] M. A. Lubinski, S. Y. Emelianov, and M. O’Donneil, “Speckle tracking methods for ultrasonic elasticity imaging using short-time correlation,” IEEE Trans. Ultrason. 76 Ferroelectr. Freq. Control, vol. 46, no. 1, pp. 82–96, 1999, doi: 10.1109/58.741427. [39] H. Shi and T. Varghese, “Two-dimensional multi-level strain estimation for discontinuous tissue,” Phys. Med. Biol., vol. 52, no. 2, pp. 389–401, Jan. 2007, doi: 10.1088/0031-9155/52/2/006. [40] N. H. Meshram and T. Varghese, “GPU accelerated multilevel lagrangian carotid strain imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 65, no. 8, pp. 1370–1379, Aug. 2018, doi: 10.1109/TUFFC.2018.2841346. [41] F. Yeung, S. F. Levinson, and K. J. Parker, “Multilevel and motion model-based ultrasonic speckle tracking algorithms,” Ultrasound Med. Biol., vol. 24, no. 3, pp. 427–441, Mar. 1998, doi: 10.1016/S0301-5629(97)00281-0. [42] S. Loncaric and Z. Majcenic, “Optical flow algorithm for cardiac motion estimation,” in Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, 2000, vol. 1, pp. 415–417, doi: 10.1109/iembs.2000.900762. [43] E. Brusseau et al., “In vivo response to compression of 35 breast lesions observed with a two-dimensional locally regularized strain estimation method,” Ultrasound Med. Biol., vol. 40, no. 2, pp. 300–312, Feb. 2014, doi: 10.1016/j.ultrasmedbio.2013.02.017. [44] S. K. Alam, F. L. Lizzi, T. Varghese, E. J. Feleppa, and S. Ramachandran, “Adaptive spectral strain estimators for elastography,” Ultrason. Imaging, vol. 26, no. 3, pp. 131–149, Aug. 2004, doi: 10.1177/016173460402600301. [45] A. Pesavento, “A time-efficient and accurate strain estimation concept for ultrasonic elastography using iterative phase zero estimation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 46, no. 5, pp. 1057–1067, 1999, doi: 10.1109/58.796111. [46] E. Brusseau, C. Perrey, P. Delachartre, M. Vogt, D. Vray, and H. Ermert, “Axial strain imaging using a local estimation of the scaling factor from RF ultrasound signals,” Ultrason. Imaging, vol. 22, no. 2, pp. 95–107, 2000, doi: 10.1177/016173460002200202. [47] H. Rivaz, E. Boctor, P. Foroughi, R. Zellars, G. Fichtinger, and G. Hager, “Ultrasound Elastography: A Dynamic Programming Approach,” IEEE Trans. Med. Imaging, vol. 27, no. 10, p. 1373, 2008, doi: 10.1109/TMI.2008.917243. [48] H. Rivaz, E. M. Boctor, M. A. Choti, and G. D. Hager, “Real-time regularized ultrasound elastography,” IEEE Trans. Med. Imaging, vol. 30, no. 4, pp. 928–945, Apr. 2011, doi: 77 10.1109/TMI.2010.2091966. [49] A. Tekalp, “Digital video processing,” Prentice Hall Press, 2015, Accessed: Jul. 04, 2021. [Online]. Available: https://dl.acm.org/doi/abs/10.5555/2843012. [50] S. Loncaric and Z. Majcenic, “Optical flow algorithm for cardiac motion estimation,” in Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, 2000, vol. 1, pp. 415–417, doi: 10.1109/iembs.2000.900762. [51] V. Pretlová and V. Červený, “Bicubic spline smoothing of two-dimensional geophysical data,” Stud. Geophys. Geod., vol. 20, no. 2, pp. 168–177, 1976, doi: 10.1007/BF01626049. [52] A. Kouibia and M. Pasadas, “Approximation of Surfaces by Fairness Bicubic Splines,” Adv. Comput. Math. 2004 201, vol. 20, no. 1, pp. 87–103, Jan. 2004, doi: 10.1023/A:1025805701726. [53] N. Zainudin et al., “Horn Schunck Algorithm for Facial Expression Change Detection Classification,” Int. J. Inf. Secur. Res., vol. 5, no. 3, pp. 574–581, Sep. 2015, doi: 10.20533/IJISR.2042.4639.2015.0066. [54] V. T and O. J, “A theoretical framework for performance characterization of elastography: the strain filter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 44, no. 1, pp. 164–172, 1997, doi: 10.1109/58.585212. |
en_US |