Waste to Energy : Potential of using activated carbon and rice husk ash in primary cells

Show simple item record

dc.contributor.author Hossain, Arman
dc.contributor.author Maroof, Irteza
dc.contributor.author Mahmud, Md. Fahim
dc.date.accessioned 2022-04-22T02:32:53Z
dc.date.available 2022-04-22T02:32:53Z
dc.date.issued 2021-03-30
dc.identifier.citation [1] K. Kiyasudeen S et al., “Organic Waste Management Practices and Their Impact on Human Health,” in Prospects of Organic Waste Management and the Significance of Earthworms, Springer International Publishing, 2016, pp. 245–252. [2] Field Guide to Appropriate Technology. 2003. [3] “Battery Statistics – Battery University.” https://batteryuniversity.com/learn/archive/battery_statistics (accessed Jan. 30, 2021). [4] Y. Liu, Q. Sun, W. Li, K. R. Adair, J. Li, and X. Sun, “A comprehensive review on recent progress in aluminum–air batteries,” Green Energy Environ., vol. 2, no. 3, pp. 246–277, 2017, doi: 10.1016/j.gee.2017.06.006. [5] B. Singh, “Rice husk ash,” in Waste and Supplementary Cementitious Materials in Concrete: Characterisation, Properties and Applications, Elsevier, 2018, pp. 417–460. [6] D. D. Bui, J. Hu, and P. Stroeven, “Particle size effect on the strength of rice husk ash blended gap-graded Portland cement concrete,” Cem. Concr. Compos., vol. 27, no. 3, pp. 357–366, Mar. 2005, doi: 10.1016/j.cemconcomp.2004.05.002. [7] V. B. Carmona, R. M. Oliveira, W. T. L. Silva, L. H. C. Mattoso, and J. M. Marconcini, “Nanosilica from rice husk: Extraction and characterization,” Ind. Crops Prod., vol. 43, no. 1, pp. 291–296, May 2013, doi: 10.1016/j.indcrop.2012.06.050. [8] N. Isoda et al., “Optimization of preparation conditions of activated carbon from agriculture waste utilizing factorial design,” Powder Technol., 2014, doi: 10.1016/j.powtec.2014.02.029. [9] M. S. Balathanigaimani, H. C. Kang, W. G. Shim, C. Kim, J. W. Lee, and H. Moon, “Preparation of powdered activated carbon from rice husk and its methane adsorption properties,” Korean J. Chem. Eng., 2006, doi: 10.1007/BF02706811. [10] T. Tay, S. Ucar, and S. Karagöz, “Preparation and characterization of activated carbon from waste biomass,” J. Hazard. Mater., vol. 165, no. 1–3, pp. 481–485, Jun. 2009, doi: 10.1016/j.jhazmat.2008.10.011. [11] J. H. Tay, X. G. Chen, S. Jeyaseelan, and N. Graham, “Optimising the preparation of activated carbon from digested sewage sludge and coconut husk,” in Chemosphere, Jul. 40 WASTE – TO – ENERGY: POTENTIAL OF USING ACTIVATED CARBON AND RICE HUSK ASH IN PRIMARY CELLS 2001, vol. 44, no. 1, pp. 45–51, doi: 10.1016/S0045-6535(00)00383-0. [12] M. K. B. Gratuito, T. Panyathanmaporn, R. A. Chumnanklang, N. Sirinuntawittaya, and A. Dutta, “Production of activated carbon from coconut shell: Optimization using response surface methodology,” Bioresour. Technol., vol. 99, no. 11, pp. 4887–4895, Jul. 2008, doi: 10.1016/j.biortech.2007.09.042. [13] K. Yang, J. Peng, C. Srinivasakannan, L. Zhang, H. Xia, and X. Duan, “Preparation of high surface area activated carbon from coconut shells using microwave heating,” Bioresour. Technol., vol. 101, no. 15, pp. 6163–6169, Aug. 2010, doi: 10.1016/j.biortech.2010.03.001. [14] A. Jain, R. Balasubramanian, and M. P. Srinivasan, “Production of high surface area mesoporous activated carbons from waste biomass using hydrogen peroxide-mediated hydrothermal treatment for adsorption applications,” Chem. Eng. J., vol. 273, pp. 622– 629, Aug. 2015, doi: 10.1016/j.cej.2015.03.111. [15] V. Sricharoenchaikul, C. Pechyen, D. Aht-Ong, and D. Atong, “Preparation and characterization of activated carbon from the pyrolysis of physic nut (Jatropha curcas L.) waste,” Energy and Fuels, vol. 22, no. 1, pp. 31–37, Jan. 2008, doi: 10.1021/ef700285u. [16] J. Zhang et al., “Preparation of bamboo-based activated carbon and its application in direct carbon fuel cells,” Energy and Fuels, vol. 25, no. 5, pp. 2187–2193, May 2011, doi: 10.1021/ef200161c. [17] M. Fujishige et al., “Preparation of activated carbon from bamboo-cellulose fiber and its use for EDLC electrode material,” J. Environ. Chem. Eng., vol. 5, no. 2, pp. 1801– 1808, Apr. 2017, doi: 10.1016/j.jece.2017.03.011. [18] S. Hu and Y. Lo Hsieh, “Preparation of activated carbon and silica particles from rice straw,” ACS Sustain. Chem. Eng., vol. 2, no. 4, pp. 726–734, Apr. 2014, doi: 10.1021/sc5000539. [19] M. N. Mahamad, M. A. A. Zaini, and Z. A. Zakaria, “Preparation and characterization of activated carbon from pineapple waste biomass for dye removal,” Int. Biodeterior. Biodegrad., vol. 102, pp. 274–280, Aug. 2015, doi: 10.1016/j.ibiod.2015.03.009. [20] A. Omri, M. Benzina, and N. Ammar, “Preparation, modification and industrial 41 WASTE – TO – ENERGY: POTENTIAL OF USING ACTIVATED CARBON AND RICE HUSK ASH IN PRIMARY CELLS application of activated carbon from almond shell,” J. Ind. Eng. Chem., vol. 19, no. 6, pp. 2092–2099, Nov. 2013, doi: 10.1016/j.jiec.2013.03.025. [21] L. Zhong, Y. Zhang, Y. Ji, P. Norris, and W. Pan, “Synthesis of activated carbon from coal pitch for mercury removal in coal-fired power plants,” J. Therm. Anal. Calorim., vol. 123, no. 1, pp. 851–860, 2016, doi: 10.1007/s10973-015-4966-5. [22] D. Prahas, Y. Kartika, N. Indraswati, and S. Ismadji, “Activated carbon from jackfruit peel waste by H3PO4 chemical activation: Pore structure and surface chemistry characterization,” Chem. Eng. J., vol. 140, no. 1–3, pp. 32–42, 2008, doi: 10.1016/j.cej.2007.08.032. [23] L. J. Kennedy, J. J. Vijaya, and G. Sekaran, “Effect of Two-Stage Process on the Preparation and Characterization of Porous Carbon Composite from Rice Husk by Phosphoric Acid Activation,” Ind. Eng. Chem. Res., vol. 43, no. 8, pp. 1832–1838, Apr. 2004, doi: 10.1021/ie034093f. [24] “Handbook of Water and Wastewater Treatment Technologies - Nicholas P Cheremisinoff - Google Books.” https://books.google.com.bd/books?hl=en&lr=&id=JN106pTmiTEC&oi=fnd&pg=PP1 &dq=Cheremisinoff+NP.+Handbook+of+water+and+wastewater+treatment+technolo gies/+Nicholas+P.+Cheremisinoff..+Boston:+Butterworth- Heinemann,+Boston&ots=qH8OR6cqxD&sig=9UMUJBwYov0GtEtt5yFIQwJn2QQ &redir_esc=y#v=onepage&q&f=false (accessed Mar. 11, 2021). [25] B. S. Inbaraj and N. Sulochana, “Carbonised jackfruit peel as an adsorbent for the removal of Cd(II) from aqueous solution,” Bioresour. Technol., vol. 94, no. 1, pp. 49– 52, Aug. 2004, doi: 10.1016/j.biortech.2003.11.018. [26] C. Tien, Adsorption calculations and modeling. Butterworth-Heinemann, 1994. [27] G. Crini, “Non-conventional low-cost adsorbents for dye removal: A review,” Bioresource Technology, vol. 97, no. 9. Elsevier, pp. 1061–1085, Jun. 01, 2006, doi: 10.1016/j.biortech.2005.05.001. [28] A. Aworn, P. Thiravetyan, and W. Nakbanpote, “Recovery of gold from gold slag by wood shaving fly ash,” J. Colloid Interface Sci., vol. 287, no. 2, pp. 394–400, Jul. 2005, doi: 10.1016/j.jcis.2005.02.048. 42 WASTE – TO – ENERGY: POTENTIAL OF USING ACTIVATED CARBON AND RICE HUSK ASH IN PRIMARY CELLS [29] S. D. Genieva, S. C. Turmanova, and L. T. Vlaev, “Utilization of Rice Husks and the Products of Its Thermal Degradation as Fillers in Polymer Composites,” in Cellulose Fibers: Bio- and Nano-Polymer Composites, Springer Berlin Heidelberg, 2011, pp. 345–375. [30] H. HAYASHI and S. NAKASHIMA, “Synthesis of trioctahedral smectite from rice husk ash as agro-waste,” Clay Sci., vol. 8, no. 4, pp. 181–193, 1992. [31] S. Kumar, S. N. Upadhyay, and Y. D. Upadhya, “Removal of phenols by adsorption on fly ash,” J. Chem. Technol. Biotechnol., vol. 37, no. 4, pp. 281–290, Apr. 2007, doi: 10.1002/jctb.280370408. [32] K. B. K. Teo et al., “Highest optical gap tetrahedral amorphous carbon,” Diam. Relat. Mater., vol. 11, no. 3–6, pp. 1086–1090, 2002. [33] J. Robertson, “Hard amorphous (diamond-like) carbons,” Prog. Solid State Chem., vol. 21, no. 4, pp. 199–333, 1991. [34] Y. Chen et al., “Application studies of activated carbon derived from rice husks produced by chemical-thermal process—A review,” Adv. Colloid Interface Sci., vol. 163, no. 1, pp. 39–52, 2011. [35] T. Adinaveen, L. John Kennedy, J. Judith Vijaya, and G. Sekaran, “Surface and porous characterization of activated carbon prepared from pyrolysis of biomass (rice straw) by two-stage procedure and its applications in supercapacitor electrodes,” J. Mater. Cycles Waste Manag., vol. 17, no. 4, pp. 736–747, Oct. 2015, doi: 10.1007/s10163- 014-0302-6. [36] M. Ahmedna, W. E. Marshall, and R. M. Rao, “Production of granular activated carbons from select agricultural by-products and evaluation of their physical, chemical and adsorption properties,” Bioresour. Technol., vol. 71, no. 2, pp. 113–123, 2000. [37] M. Chen et al., “Preparation of activated carbon from cotton stalk and its application in supercapacitor,” J. solid state Electrochem., vol. 17, no. 4, pp. 1005–1012, 2013. [38] Z. Ma, T. Kyotani, and A. Tomita, “Preparation of a high surface area microporous carbon having the structural regularity of Y zeolite,” Chem. Commun., no. 23, pp. 2365– 2366, Dec. 2000, doi: 10.1039/b006295m. [39] P. Ariyadejwanich, W. Tanthapanichakoon, K. Nakagawa, S. R. Mukai, and H. Tamon, 43 WASTE – TO – ENERGY: POTENTIAL OF USING ACTIVATED CARBON AND RICE HUSK ASH IN PRIMARY CELLS “Preparation and characterization of mesoporous activated carbon from waste tires,” Carbon N. Y., vol. 41, no. 1, pp. 157–164, Jan. 2003, doi: 10.1016/S0008- 6223(02)00267-1. [40] E. Frackowiak and F. Béguin, “Carbon materials for the electrochemical storage of energy in capacitors,” Carbon, vol. 39, no. 6. Elsevier Ltd, pp. 937–950, May 01, 2001, doi: 10.1016/S0008-6223(00)00183-4. [41] K. H. Chuang, C. Y. Lu, M. Y. Wey, and Y. N. Huang, “NO removal by activated carbon-supported copper catalysts prepared by impregnation, polyol, and microwave heated polyol processes,” Appl. Catal. A Gen., vol. 397, no. 1–2, pp. 234–240, Apr. 2011, doi: 10.1016/j.apcata.2011.03.003. [42] M. A. De La Casa-Lillo, F. Lamari-Darkrim, D. Cazorla-Amorós, and A. Linares- Solano, “Hydrogen storage in activated carbons and activated carbon fibers,” J. Phys. Chem. B, vol. 106, no. 42, pp. 10930–10934, 2002, doi: 10.1021/jp014543m. [43] L. Schlapbach and A. Züttel, “Hydrogen-storage materials for mobile applications,” in Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, World Scientific Publishing Co., 2010, pp. 265– 270. [44] R. StrÖbel, J. Garche, and P. T. Moseley, “L JÖrissen and G Wolf,” J. Power Sources., vol. 159, p. 781, 2006. [45] D. G. Nair, A. Fraaij, A. A. K. Klaassen, and A. P. M. Kentgens, “A structural investigation relating to the pozzolanic activity of rice husk ashes,” Cem. Concr. Res., vol. 38, no. 6, pp. 861–869, Jun. 2008, doi: 10.1016/j.cemconres.2007.10.004. [46] P. C. W. Kwong, C. Y. H. Chao, J. H. Wang, C. W. Cheung, and G. Kendall, “Cocombustion performance of coal with rice husks and bamboo,” Atmos. Environ., vol. 41, no. 35, pp. 7462–7472, Nov. 2007, doi: 10.1016/j.atmosenv.2007.05.040. [47] M. Rozainee, S. P. Ngo, A. A. Salema, K. G. Tan, M. Ariffin, and Z. N. Zainura, “Effect of fluidising velocity on the combustion of rice husk in a bench-scale fluidised bed combustor for the production of amorphous rice husk ash,” Bioresour. Technol., vol. 99, no. 4, pp. 703–713, Mar. 2008, doi: 10.1016/j.biortech.2007.01.049. [48] “Growstones ideal alternative to perlite, parboiled rice hulls.” 44 WASTE – TO – ENERGY: POTENTIAL OF USING ACTIVATED CARBON AND RICE HUSK ASH IN PRIMARY CELLS https://phys.org/news/2011-12-growstones-ideal-alternative-perlite-parboiled.html (accessed Mar. 13, 2021). [49] “(PDF) Producing Amorphous White Silica from Rice Husk.” https://www.researchgate.net/publication/236839923_Producing_Amorphous_White_ Silica_from_Rice_Husk (accessed Mar. 13, 2021). [50] I. : Povindar, K. Mehta, E. Cerrito, and C. Assignee, “SILICEOUS ASHES AND HYDRAULC CEMENTS PREPARED THEREFROM,” Dec. 1975. [51] “Aluminum Air Battery - Clean Energy Institute.” https://www.cei.washington.edu/education/lesson-plans-resources/aluminum-airbattery/ (accessed Feb. 03, 2021). [52] S. F. Tie and C. W. Tan, “A review of energy sources and energy management system in electric vehicles,” Renewable and Sustainable Energy Reviews, vol. 20. Pergamon, pp. 82–102, Apr. 01, 2013, doi: 10.1016/j.rser.2012.11.077. [53] Q. Li and N. J. Bjerrum, “Aluminum as anode for energy storage and conversion: A review,” J. Power Sources, vol. 110, no. 1, pp. 1–10, Jul. 2002, doi: 10.1016/S0378- 7753(01)01014-X. [54] M. Mokhtar et al., “Recent developments in materials for aluminum-air batteries: A review,” Journal of Industrial and Engineering Chemistry, vol. 32. Korean Society of Industrial Engineering Chemistry, pp. 1–20, Dec. 25, 2015, doi: 10.1016/j.jiec.2015.08.004. [55] S. Zaromb, “The Use and Behavior of Aluminum Anodes in Alkaline Primary Batteries,” J. Electrochem. Soc., 1962, doi: 10.1149/1.2425257. [56] L. Bockstie, D. Trevethan, and S. Zaromb, “Control of Al Corrosion in Caustic Solutions,” J. Electrochem. Soc., 1963, doi: 10.1149/1.2425727. [57] M. Pino, D. Herranz, J. Chacón, E. Fatás, and P. Ocón, “Carbon treated commercial aluminium alloys as anodes for aluminium-air batteries in sodium chloride electrolyte,” J. Power Sources, 2016, doi: 10.1016/j.jpowsour.2016.06.118. [58] J. Bernard, M. Chatenet, and F. Dalard, “Understanding aluminum behaviour in aqueous alkaline solution using coupled techniques. Part I. Rotating ring-disk study,” Electrochim. Acta, 2006, doi: 10.1016/j.electacta.2006.03.076. 45 WASTE – TO – ENERGY: POTENTIAL OF USING ACTIVATED CARBON AND RICE HUSK ASH IN PRIMARY CELLS [59] Y. J. Cho, I. J. Park, H. J. Lee, and J. G. Kim, “Aluminum anode for aluminum-air battery - Part I: Influence of aluminum purity,” J. Power Sources, 2015, doi: 10.1016/j.jpowsour.2014.12.026. [60] E. I. Shkolnikov, A. Z. Zhuk, and M. S. Vlaskin, “Aluminum as energy carrier: Feasibility analysis and current technologies overview,” Renewable and Sustainable Energy Reviews. 2011, doi: 10.1016/j.rser.2011.07.091. [61] J. Ryu, H. Jang, J. Park, Y. Yoo, M. Park, and J. Cho, “Seed-mediated atomic-scale reconstruction of silver manganate nanoplates for oxygen reduction towards highenergy aluminum-air flow batteries,” Nat. Commun., 2018, doi: 10.1038/s41467-018- 06211-3. [62] S. Z. El Abedin and F. Endres, “Electrochemical behaviour of Al, Al-In and Al-Ga-In alloys in chloride solutions containing zinc ions,” J. Appl. Electrochem., 2004, doi: 10.1023/B:JACH.0000042672.23588.df. [63] D. R. Egan, C. Ponce De León, R. J. K. Wood, R. L. Jones, K. R. Stokes, and F. C. Walsh, “Developments in electrode materials and electrolytes for aluminiumeair batteries,” Journal of Power Sources. 2013, doi: 10.1016/j.jpowsour.2013.01.141. [64] L. Li and A. Manthiram, “Long-Life, High-Voltage Acidic Zn-Air Batteries,” Adv. Energy Mater., 2016, doi: 10.1002/aenm.201502054. [65] X. Y. Wang, J. M. Wang, Q. L. Wang, H. B. Shao, and J. Q. Zhang, “The effects of polyethylene glycol (PEG) as an electrolyte additive on the corrosion behavior and electrochemical performances of pure aluminum in an alkaline zincate solution,” Mater. Corros., 2011, doi: 10.1002/maco.201005646. [66] J. Liu, D. Wang, D. Zhang, L. Gao, and T. Lin, “Synergistic effects of carboxymethyl cellulose and ZnO as alkaline electrolyte additives for aluminium anodes with a view towards Al-air batteries,” J. Power Sources, 2016, doi: 10.1016/j.jpowsour.2016.09.060. [67] S. Yang and H. Knickle, “Design and analysis of aluminum/air battery system for electric vehicles,” J. Power Sources, vol. 112, no. 1, pp. 162–173, Oct. 2002, doi: 10.1016/S0378-7753(02)00370-1. [68] M. N. El-Haddad and A. S. Fouda, “Electroanalytical, quantum and surface characterization studies on imidazole derivatives as corrosion inhibitors for aluminum 46 WASTE – TO – ENERGY: POTENTIAL OF USING ACTIVATED CARBON AND RICE HUSK ASH IN PRIMARY CELLS in acidic media,” J. Mol. Liq., 2015, doi: 10.1016/j.molliq.2015.06.005. [69] D. P. Wang, D. Q. Zhang, K. Y. Lee, and L. X. Gao, “Performance of AA5052 alloy anode in alkaline ethylene glycol electrolyte with dicarboxylic acids additives for aluminium-air batteries,” J. Power Sources, 2015, doi: 10.1016/j.jpowsour.2015.08.033. [70] A. R. Madram, F. Shokri, M. R. Sovizi, and H. Kalhor, “Aromatic carboxylic acids as corrosion inhibitors for aluminium in alkaline solution,” Port. Electrochim. Acta, 2016, doi: 10.4152/pea.201606395. [71] D. Wang, H. Li, J. Liu, D. Zhang, L. Gao, and L. Tong, “Evaluation of AA5052 alloy anode in alkaline electrolyte with organic rare-earth complex additives for aluminiumair batteries,” J. Power Sources, 2015, doi: 10.1016/j.jpowsour.2015.05.104. [72] J. B. Wang, J. M. Wang, H. B. Shao, J. Q. Zhang, and C. N. Cao, “The corrosion and electrochemical behaviour of pure aluminium in alkaline methanol solutions,” J. Appl. Electrochem., 2007, doi: 10.1007/s10800-007-9310-8. [73] Q. X. Kang, Y. Wang, and X. Y. Zhang, “Experimental and theoretical investigation on calcium oxide and L-aspartic as an effective hybrid inhibitor for aluminum-air batteries,” J. Alloys Compd., 2019, doi: 10.1016/j.jallcom.2018.09.391. [74] B. J. Hopkins, Y. Shao-Horn, and D. P. Hart, “Suppressing corrosion in primary aluminum–air batteries via oil displacement,” Science (80-. )., 2018, doi: 10.1126/science.aat9149. [75] A. A. Mohamad, “Electrochemical properties of aluminum anodes in gel electrolytebased aluminum-air batteries,” Corros. Sci., vol. 50, no. 12, pp. 3475–3479, Dec. 2008, doi: 10.1016/j.corsci.2008.09.001. [76] J. Bernard, M. Chatenet, and F. Dalard, “Understanding aluminum behaviour in aqueous alkaline solution using coupled techniques. Part I. Rotating ring-disk study,” Electrochim. Acta, vol. 52, no. 1, pp. 86–93, Oct. 2006, doi: 10.1016/j.electacta.2006.03.076. [77] M. L. Doche, J. J. Rameau, R. Durand, and F. Novel-Cattin, “Electrochemical behaviour of aluminium in concentrated NaOH solutions,” Corros. Sci., vol. 41, no. 4, pp. 805– 826, Apr. 1999, doi: 10.1016/S0010-938X(98)00107-3. [78] L. Fan and H. Lu, “The effect of grain size on aluminum anodes for Al-air batteries in 47 WASTE – TO – ENERGY: POTENTIAL OF USING ACTIVATED CARBON AND RICE HUSK ASH IN PRIMARY CELLS alkaline electrolytes,” J. Power Sources, vol. 284, pp. 409–415, Jun. 2015, doi: 10.1016/j.jpowsour.2015.03.063. [79] Y. J. Cho, I. J. Park, H. J. Lee, and J. G. Kim, “Aluminum anode for aluminum-air battery - Part I: Influence of aluminum purity,” J. Power Sources, vol. 277, pp. 370– 378, Mar. 2015, doi: 10.1016/j.jpowsour.2014.12.026. [80] L. Fan, H. Lu, J. Leng, Z. Sun, and C. Chen, “The effect of crystal orientation on the aluminum anodes of the aluminum-air batteries in alkaline electrolytes,” J. Power Sources, vol. 299, pp. 66–69, Dec. 2015, doi: 10.1016/j.jpowsour.2015.08.095. [81] S. B. Saidman and J. B. Bessone, “Activation of aluminium by indium ions in chloride solutions,” Electrochim. Acta, vol. 42, no. 3, pp. 413–420, Jan. 1997, doi: 10.1016/S0013-4686(96)00236-8. [82] A. R. Despić, D. M. Dražić, M. M. Purenović, and N. Ciković, “Electrochemical properties of aluminium alloys containing indium, gallium and thallium,” J. Appl. Electrochem., vol. 6, no. 6, pp. 527–542, 1976, doi: 10.1007/BF00614541. [83] H. A. El Shayeb, F. M. Abd El Wahab, and S. Zein El Abedin, “Electrochemical behaviour of Al, Al-Sn, Al-Zn and Al-Zn-Sn alloys in chloride solutions containing indium ions,” J. Appl. Electrochem., vol. 29, no. 4, pp. 473–480, 1999, doi: 10.1023/A:1003425306696. [84] S. Gudić, I. Smoljko, and M. Kliškić, “Electrochemical behaviour of aluminium alloys containing indium and tin in NaCl solution,” Mater. Chem. Phys., vol. 121, no. 3, pp. 561–566, Jun. 2010, doi: 10.1016/j.matchemphys.2010.02.040. [85] W. Wilhelmsen, T. Arnesen, Hasvold, and N. J. Størkersen, “The electrochemical behaviour of AlIn alloys in alkaline electrolytes,” Electrochim. Acta, vol. 36, no. 1, pp. 79–85, Jan. 1991, doi: 10.1016/0013-4686(91)85182-7. [86] M. Pino, J. Chacón, E. Fatás, and P. Ocón, “Performance of commercial aluminium alloys as anodes in gelled electrolyte aluminium-air batteries,” J. Power Sources, vol. 299, pp. 195–201, Dec. 2015, doi: 10.1016/j.jpowsour.2015.08.088. [87] Z. Sun and H. Lu, “Performance of Al-0.5In as Anode for Al–Air Battery in Inhibited Alkaline Solutions,” J. Electrochem. Soc., vol. 162, no. 8, pp. A1617–A1623, May 2015, doi: 10.1149/2.0881508jes. 48 WASTE – TO – ENERGY: POTENTIAL OF USING ACTIVATED CARBON AND RICE HUSK ASH IN PRIMARY CELLS [88] Z. Sun, H. Lu, L. Fan, Q. Hong, J. Leng, and C. Chen, “Performance of Al-Air Batteries Based on Al–Ga, Al–In and Al–Sn Alloy Electrodes,” J. Electrochem. Soc., vol. 162, no. 10, pp. A2116–A2122, Aug. 2015, doi: 10.1149/2.0681510jes. [89] M. Jingling, W. Jiuba, Z. Hongxi, and L. Quanan, “Electrochemical performances of Al-0.5Mg-0.1Sn-0.02In alloy in different solutions for Al-air battery,” J. Power Sources, vol. 293, pp. 592–598, Jul. 2015, doi: 10.1016/j.jpowsour.2015.05.113. [90] S. Khireche, D. Boughrara, A. Kadri, L. Hamadou, and N. Benbrahim, “Corrosion mechanism of Al, Al-Zn and Al-Zn-Sn alloys in 3wt.% NaCl solution,” Corros. Sci., vol. 87, pp. 504–516, Oct. 2014, doi: 10.1016/j.corsci.2014.07.018. [91] J. Ma, J. Wen, F. Ren, G. Wang, and Y. Xiong, “Electrochemical Performance of Al−Mg−Sn Based Alloys as Anode for Al-Air Battery,” J. Electrochem. Soc., vol. 163, no. 8, pp. A1759–A1764, Jun. 2016, doi: 10.1149/2.1241608jes. [92] K. Harting, U. Kunz, and T. Turek, “Zinc-air batteries: Prospects and challenges for future improvement,” Zeitschrift fur Phys. Chemie, vol. 226, no. 2, pp. 151–166, Feb. 2012, doi: 10.1524/zpch.2012.0152. [93] K. Liu et al., “ Fe 3 C@Fe/N Doped Graphene-Like Carbon Sheets as a Highly Efficient Catalyst in Al-Air Batteries ,” J. Electrochem. Soc., vol. 164, no. 6, pp. F475–F483, Mar. 2017, doi: 10.1149/2.0171706jes. [94] X. Wang, P. J. Sebastian, M. A. Smit, H. Yang, and S. A. Gamboa, “Studies on the oxygen reduction catalyst for zinc-air battery electrode,” J. Power Sources, vol. 124, no. 1, pp. 278–284, Oct. 2003, doi: 10.1016/S0378-7753(03)00737-7. [95] T. Takeguchi et al., “Layered perovskite oxide: A reversible air electrode for oxygen evolution/reduction in rechargeable metal-air batteries,” J. Am. Chem. Soc., vol. 135, no. 30, pp. 11125–11130, Jul. 2013, doi: 10.1021/ja403476v. [96] I. Roche, E. Chaînet, M. Chatenet, and J. Vondrák, “Carbon-supported manganese oxide nanoparticles as electrocatalysts for the Oxygen Reduction Reaction (ORR) in alkaline medium: Physical characterizations and ORR mechanism,” J. Phys. Chem. C, vol. 111, no. 3, pp. 1434–1443, Jan. 2007, doi: 10.1021/jp0647986. [97] B. Cui, H. Lin, J.-B. Li, X. Li, J. Yang, and J. Tao, “Core-Ring Structured NiCo2O4 Nanoplatelets: Synthesis, Characterization, and Electrocatalytic Applications,” Adv. 49 WASTE – TO – ENERGY: POTENTIAL OF USING ACTIVATED CARBON AND RICE HUSK ASH IN PRIMARY CELLS Funct. Mater., vol. 18, no. 9, pp. 1440–1447, Apr. 2008, doi: 10.1002/adfm.200700982. [98] N. L. Wu, W. R. Liu, and S. J. Su, “Effect of oxygenation on electrocatalysis of La0.6Ca0.4CoO3-x in bifunctional air electrode,” Electrochim. Acta, vol. 48, no. 11, pp. 1567–1571, May 2003, doi: 10.1016/S0013-4686(03)00033-1. [99] F. Bidault, D. J. L. Brett, P. H. Middleton, and N. P. Brandon, “Review of gas diffusion cathodes for alkaline fuel cells,” J. Power Sources, vol. 187, no. 1, pp. 39– 48, Feb. 2009, doi: 10.1016/j.jpowsour.2008.10.106. [100] G. Wu and P. Zelenay, “Nanostructured nonprecious metal catalysts for oxygen reduction reaction,” Acc. Chem. Res., vol. 46, no. 8, pp. 1878–1889, Aug. 2013, doi: 10.1021/ar400011z. [101] F. Cheng and J. Chen, “Metal–air batteries: From oxygen reduction electrochemistry to cathode catalysts,” Chem. Soc. Rev., vol. 41, no. 6, pp. 2172–2192, Feb. 2012, doi: 10.1039/c1cs15228a. [102] X. Ge et al., “Oxygen Reduction in Alkaline Media: From Mechanisms to Recent Advances of Catalysts,” ACS Catal., vol. 5, no. 8, pp. 4643–4667, Aug. 2015, doi: 10.1021/acscatal.5b00524. [103] H. Hu, J. H. Xin, H. Hu, X. Wang, and Y. Kong, “Metal-free graphene-based catalystinsight into the catalytic activity: A short review,” Applied Catalysis A: General, vol. 492. Elsevier B.V., pp. 1–9, Feb. 25, 2015, doi: 10.1016/j.apcata.2014.11.041. [104] Y. Feng and N. Alonso-Vante, “Nonprecious metal catalysts for the molecular oxygenreduction reaction,” Phys. status solidi, vol. 245, no. 9, pp. 1792–1806, Sep. 2008, doi: 10.1002/pssb.200879537. [105] B. Wang, “Recent development of non-platinum catalysts for oxygen reduction reaction,” Journal of Power Sources, vol. 152, no. 1–2. Elsevier, pp. 1–15, Dec. 01, 2005, doi: 10.1016/j.jpowsour.2005.05.098. [106] P. A. Christensen, A. Hamnett, and D. Linares-Moya, “Oxygen reduction and fuel oxidation in alkaline solution,” Physical Chemistry Chemical Physics, vol. 13, no. 12. The Royal Society of Chemistry, pp. 5206–5214, Mar. 28, 2011, doi: 10.1039/c0cp02365e. [107] J. S. Spendelow and A. Wieckowski, “Electrocatalysis of oxygen reduction and small 50 WASTE – TO – ENERGY: POTENTIAL OF USING ACTIVATED CARBON AND RICE HUSK ASH IN PRIMARY CELLS alcohol oxidation in alkaline media,” Phys. Chem. Chem. Phys., vol. 9, no. 21, pp. 2654– 2675, May 2007, doi: 10.1039/b703315j. [108] “Electrochemical Oxygen Technology - Dr. Kim Kinoshita - Google Books.” https://books.google.com.bd/books?hl=en&lr=&id=2m22CvObj80C&oi=fnd&pg=PA 1&dq=K.+Kinoshita,+Electrochemical+Oxygen+Technology,+John+Wiley+%26+Son s,+1992.&ots=3XnbGMbFU7&sig=fPNEqdSP7t7ezXABNvs7Bo9crE& redir_esc=y#v=onepage&q=K. Kinoshita%2C Electrochemical Oxygen Technology%2C John Wiley %26 Sons%2C 1992.&f=false (accessed Mar. 08, 2021). [109] J. Zhao, W. Chen, Y. Zheng, and X. Li, “Novel carbon supported hollow Pt nanospheres for methanol electrooxidation,” J. Power Sources, vol. 162, no. 1, pp. 168–172, Nov. 2006, doi: 10.1016/j.jpowsour.2006.06.090. [110] S. J. Bae et al., “Facile preparation of carbon-supported PtNi hollow nanoparticles with high electrochemical performance,” J. Mater. Chem., vol. 22, no. 18, pp. 8820– 8825, May 2012, doi: 10.1039/c2jm16827h. [111] Y. Zhang et al., “Hollow core supported Pt monolayer catalysts for oxygen reduction,” Catal. Today, vol. 202, no. 1, pp. 50–54, Mar. 2013, doi: 10.1016/j.cattod.2012.03.040. [112] S. Ghosh et al., “Microwave-assisted synthesis of porous Mn2O3 nanoballs as bifunctional electrocatalyst for oxygen reduction and evolution reaction,” Catal. Sci. Technol., vol. 6, no. 5, pp. 1417–1429, Feb. 2016, doi: 10.1039/c5cy01264c. [113] Y. Xue, H. Miao, S. Sun, Q. Wang, S. Li, and Z. Liu, “(La1−xSrx)0.98MnO3perovskite with A-site deficiencies toward oxygen reduction reaction in aluminum-air batteries,” J. Power Sources, vol. 342, pp. 192–201, Feb. 2017, doi: 10.1016/j.jpowsour.2016.12.065. [114] O. Crowther and M. Salomon, “Oxygen Selective Membranes for Li-Air (O2) Batteries,” Membranes (Basel)., vol. 2, no. 2, pp. 216–227, May 2012, doi: 10.3390/membranes2020216. [115] Y. Zhang et al., “Manageable N-doped graphene for high performance oxygen reduction reaction,” Sci. Rep., vol. 3, no. 1, pp. 1–8, Sep. 2013, doi: 10.1038/srep02771. [116] A. Zitolo et al., “Identification of catalytic sites for oxygen reduction in iron- and nitrogendoped graphene materials,” Nat. Mater., vol. 14, no. 9, pp. 937–942, Sep. 2015, 51 WASTE – TO – ENERGY: POTENTIAL OF USING ACTIVATED CARBON AND RICE HUSK ASH IN PRIMARY CELLS doi: 10.1038/nmat4367. [117] A. A. Eissa, S. G. Peera, N. H. Kim, and J. H. Lee, “G-C3N4 templated synthesis of the Fe3C@NSC electrocatalyst enriched with Fe-Nx active sites for efficient oxygen reduction reaction,” J. Mater. Chem. A, vol. 7, no. 28, pp. 16920–16936, Jul. 2019, doi: 10.1039/c9ta01837a. [118] M. Terrones et al., “Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications,” Nano Today, vol. 5, no. 4. Elsevier B.V., pp. 351– 372, Aug. 01, 2010, doi: 10.1016/j.nantod.2010.06.010. [119] L. Dai, Y. Xue, L. Qu, H. J. Choi, and J. B. Baek, “Metal-Free Catalysts for Oxygen Reduction Reaction,” Chemical Reviews, vol. 115, no. 11. American Chemical Society, pp. 4823–4892, Jun. 10, 2015, doi: 10.1021/cr5003563. [120] P. Ganesan, M. Prabu, J. Sanetuntikul, and S. Shanmugam, “Cobalt sulfide nanoparticles grown on nitrogen and sulfur codoped graphene oxide: An efficient electrocatalyst for oxygen reduction and evolution reactions,” ACS Catal., vol. 5, no. 6, pp. 3625–3637, Jun. 2015, doi: 10.1021/acscatal.5b00154. [121] D. Yin et al., “Coated/Sandwiched rGO/CoS x Composites Derived from Metal-Organic Frameworks/GO as Advanced Anode Materials for Lithium-Ion Batteries,” Chem. - A Eur. J., vol. 22, no. 4, pp. 1467–1474, Jan. 2016, doi: 10.1002/chem.201504399. [122] Y. Hou et al., “Nitrogen-doped graphene/CoNi alloy encased within bamboo-like carbon nanotube hybrids as cathode catalysts in microbial fuel cells,” J. Power Sources, vol. 307, pp. 561–568, Mar. 2016, doi: 10.1016/j.jpowsour.2016.01.018. [123] M. Sun, H. Liu, Y. Liu, J. Qu, and J. Li, “Graphene-based transition metal oxide nanocomposites for the oxygen reduction reaction,” Nanoscale, vol. 7, no. 4, pp. 1250– 1269, Jan. 2015, doi: 10.1039/c4nr05838k. [124] J. Hu, L. Wang, L. Shi, and H. Huang, “Oxygen reduction reaction activity of LaMn1- xCoxO3-graphene nanocomposite for zinc-air battery,” Electrochim. Acta, vol. 161, pp. 115–123, Apr. 2015, doi: 10.1016/j.electacta.2015.02.048. [125] L. Tao et al., “Creating coordinatively unsaturated metal sites in metal-organicframeworks as efficient electrocatalysts for the oxygen evolution reaction: Insights into the active centers,” Nano Energy, vol. 41, pp. 417–425, Nov. 2017, doi: 52 WASTE – TO – ENERGY: POTENTIAL OF USING ACTIVATED CARBON AND RICE HUSK ASH IN PRIMARY CELLS 10.1016/j.nanoen.2017.09.055. [126] G. Gnana Kumar, M. Christy, H. Jang, and K. S. Nahm, “Cobaltite oxide nanosheets anchored graphene nanocomposite as an efficient oxygen reduction reaction (ORR) catalyst for the application of lithium-air batteries,” J. Power Sources, vol. 288, pp. 451– 460, Aug. 2015, doi: 10.1016/j.jpowsour.2015.04.029. [127] S. Bag, K. Roy, C. S. Gopinath, and C. R. Raj, “Facile single-step synthesis of nitrogen-doped reduced graphene oxide-Mn3O4 hybrid functional material for the electrocatalytic reduction of oxygen,” ACS Appl. Mater. Interfaces, vol. 6, no. 4, pp. 2692–2699, Feb. 2014, doi: 10.1021/am405213z. [128] L. Wang, Z. Sofer, A. Ambrosi, P. Šimek, and M. Pumera, “3D-graphene for electrocatalysis of oxygen reduction reaction: Increasing number of layers increases the catalytic effect,” Electrochem. commun., vol. 46, pp. 148–151, Sep. 2014, doi: 10.1016/j.elecom.2014.07.002. [129] Z. Liu et al., “Sulfur-nitrogen co-doped three-dimensional carbon foams with hierarchical pore structures as efficient metal-free electrocatalysts for oxygen reduction reactions,” Nanoscale, vol. 5, no. 8, pp. 3283–3288, Apr. 2013, doi: 10.1039/c3nr34003a. [130] H. Jiang, Y. Zhu, Q. Feng, Y. Su, X. Yang, and C. Li, “Nitrogen and Phosphorus Dual-Doped Hierarchical Porous Carbon Foams as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reactions,” Chem. - A Eur. J., vol. 20, no. 11, pp. 3106–3112, Mar. 2014, doi: 10.1002/chem.201304561. [131] W. Yang, X. Yue, X. Liu, J. Zhai, and J. Jia, “IL-derived N, S co-doped ordered mesoporous carbon for high-performance oxygen reduction,” Nanoscale, vol. 7, no. 28, pp. 11956–11961, Jul. 2015, doi: 10.1039/c5nr02497h. [132] B. Zhao et al., “A high-energy, long cycle-life hybrid supercapacitor based on graphene composite electrodes,” Energy Storage Mater., vol. 7, pp. 32–39, Apr. 2017, doi: 10.1016/j.ensm.2016.11.010. [133] Y. Xue et al., “Three-dimensional B,N-doped graphene foam as a metal-free catalyst for oxygen reduction reaction,” Phys. Chem. Chem. Phys., vol. 15, no. 29, pp. 12220– 12226, Aug. 2013, doi: 10.1039/c3cp51942b. 53 WASTE – TO – ENERGY: POTENTIAL OF USING ACTIVATED CARBON AND RICE HUSK ASH IN PRIMARY CELLS [134] R. Du et al., “Nitrogen-Doped Carbon Nanotube Aerogels for High-Performance ORR Catalysts,” Small, vol. 11, no. 32, pp. 3903–3908, Aug. 2015, doi: 10.1002/smll.201500587. [135] Z. Pu et al., “Spinel ZnCo2O4/N-doped carbon nanotube composite: A high active oxygen reduction reaction electrocatalyst,” J. Power Sources, vol. 257, pp. 170–173, Jul. 2014, doi: 10.1016/j.jpowsour.2014.01.120. [136] A. Marcilla, S. García-García, M. Asensio, and J. A. Conesa, “Influence of thermal treatment regime on the density and reactivity of activated carbons from almond shells,” Carbon N. Y., 2000, doi: 10.1016/S0008-6223(99)00123-2. [137] G. N. Manju, C. Raji, and T. S. Anirudhan, “Evaluation of coconut husk carbon for the removal of arsenic from water,” Water Res., 1998, doi: 10.1016/S0043- 1354(98)00068-2. [138] L. E. Sojo, A. Brocke, J. Fillion, and S. M. Price, “Application of activated carbon membranes for on-line cleanup of vegetable and fruit extracts in the determination of pesticide multiresidues by gas chromatography with mass selective detection,” J. Chromatogr. A, 1997, doi: 10.1016/S0021-9673(97)00721-8. [139] A. A. M. Daifullah, B. S. Girgis, and H. M. H. Gad, “Utilization of agro-residues (rice husk) in small waste water treatment plans,” Mater. Lett., 2003, doi: 10.1016/S0167- 577X(02)01058-3. [140] A. H. El-Sheikh, A. P. Newman, H. K. Al-Daffaee, S. Phull, and N. Cresswell, “Characterization of activated carbon prepared from a single cultivar of Jordanian Olive stones by chemical and physicochemical techniques,” J. Anal. Appl. Pyrolysis, 2004, doi: 10.1016/S0165-2370(03)00061-5. [141] S. G. J. Heijman and R. Hopman, “Activated carbon filtration in drinking water production: Model prediction and new concepts,” 1999, doi: 10.1016/S0927- 7757(98)00643-8. [142] M. Yates, J. Blanco, P. Avila, and M. P. Martin, “Honeycomb monoliths of activated carbons for effluent gas purification,” Microporous Mesoporous Mater., 2000, doi: 10.1016/S1387-1811(99)00266-8. [143] S. Vitolo and M. Seggiani, “Mercury removal from geothermal exhaust gas by sulfur- 54 WASTE – TO – ENERGY: POTENTIAL OF USING ACTIVATED CARBON AND RICE HUSK ASH IN PRIMARY CELLS impregnated and virgin activated carbons,” Geothermics, 2002, doi: 10.1016/S0375- 6505(02)00005-6. [144] I. Mochida et al., “Removal of SOx and NOx over activated carbon fibers,” Carbon N. Y., 2000, doi: 10.1016/S0008-6223(99)00179-7. [145] A. Da̧ browski, P. Podkościelny, Z. Hubicki, and M. Barczak, “Adsorption of phenolic compounds by activated carbon - A critical review,” Chemosphere, 2005, doi: 10.1016/j.chemosphere.2004.09.067. [146] G. Dursun, H. Çiçek, and A. Y. Dursun, “Adsorption of phenol from aqueous solution by using carbonised beet pulp,” J. Hazard. Mater., 2005, doi: 10.1016/j.jhazmat.2005.05.023. [147] M. E. Peterson, “Toxicologic Decontamination,” in Small Animal Toxicology, Third Edition, Elsevier Inc., 2012, pp. 73–83. [148] “The Science Behind Activated Carbon Water Filters | CB Tech.” https://www.carbonblocktech.com/the-science-behind-activated-carbon-water-filters/ (accessed Jan. 25, 2021). [149] V. T. A. Van, C. Rößler, D. D. Bui, and H. M. Ludwig, “Mesoporous structure and pozzolanic reactivity of rice husk ash in cementitious system,” Constr. Build. Mater., vol. 43, pp. 208–216, Jun. 2013, doi: 10.1016/j.conbuildmat.2013.02.004. [150] G. A. Habeeb and H. Bin Mahmud, “Study on properties of rice husk ash and its use as cement replacement material,” Mater. Res., vol. 13, no. 2, pp. 185–190, 2010, doi: 10.1590/S1516-14392010000200011. [151] “Airiti Library_Utilization+of+Rice+Husk+Ash+for+Sustainable+Construction:+A+Review.” https://www.airitilibrary.com/Publication/alDetailedMesh?docid=20407467-201504- 201506220037-201506220037-1119-1127 (accessed Mar. 13, 2021). [152] “Waste materials in construction. Wascon 2000. Proceedings of the international conference on the science and engineering of recycling for environmental protection (Conference) | ETDEWEB.” https://www.osti.gov/etdeweb/biblio/20196209 (accessed Mar. 13, 2021). [153] C. Fapohunda, B. Akinbile, and A. Shittu, “Structure and properties of mortar and 55 WASTE – TO – ENERGY: POTENTIAL OF USING ACTIVATED CARBON AND RICE HUSK ASH IN PRIMARY CELLS concrete with rice husk ash as partial replacement of ordinary Portland cement – A review,” International Journal of Sustainable Built Environment, vol. 6, no. 2. Elsevier B.V., pp. 675–692, Dec. 01, 2017, doi: 10.1016/j.ijsbe.2017.07.004. [154] B. H. A. BAKAR, R. P. JAYA, and H. A. AZIZ, “MALAYSIAN RICE HUSK ASH – IMPROVING THE DURABILITY AND CORROSION RESISTANCE OF CONCRETE: PRE-REVIEW,” EACEF - Int. Conf. Civ. Eng., vol. 1, pp. 607–612, Aug. 2011, Accessed: Mar. 13, 2021. [Online]. Available: http://proceeding.eacef.com/ojs/index.php/EACEF/article/view/428. [155] A. E. Ahmed and F. Adam, “Indium incorporated silica from rice husk and its catalytic activity,” Microporous Mesoporous Mater., vol. 103, no. 1–3, pp. 284–295, Jun. 2007, doi: 10.1016/j.micromeso.2007.01.055. [156] “(PDF) Rice Husk Ash Concrete: the Effect of RHA Average Particle Size on Mechanical Properties and Drying Shrinkage.” https://www.researchgate.net/publication/264869618_Rice_Husk_Ash_Concrete_the_ Effect_of_RHA_Average_Particle_Size_on_Mechanical_Properties_and_Drying_Shri nkage (accessed Mar. 13, 2021). en_US
dc.identifier.uri http://hdl.handle.net/123456789/1387
dc.description Supervised by Prof. Dr. Md. Anayet Ullah Patwari, Department of Mechanical and Chemical Engineering(MPE), Islamic University of Technology(IUT), Board Bazar, Gazipur-1704, Bangladesh en_US
dc.description.abstract Rapid growth of population has brought up some serious concerns, such as waste management and excessive use of fossil fuels causing pollution and negative impact on climate change. A large portion of the waste is organic waste, which can be turned into Activated Carbon (AC) and AC can be used to generate electricity by using it as a cathode catalyst in metal-air cell. Aluminum-air cell has the potential of becoming vital in energy-storage application in future because of its high theoretical energy density, even higher than commonly used lithium-ion batteries. However, it is not used widely because the cost of air cathode catalyst and metal anode is high. But if we replace the catalyst by activated carbon obtained from waste or a mixture of activated carbon with other waste (rice husk ash) and use recycled aluminum foil as anode then the production cost might be feasible for vast use of this type of cells. Our objective is to utilize some common and organic waste in the process of fabricating Al-air battery suitable for small and day-to-day usage reducing production cost and limitations. In this paper, we have focused on the feasibility of using activated carbon and rice husk mixture as air cathode catalyst of Al-air cell; and the observations were interesting. We prepared 11 samples of mixture of rice husk and AC in different ratios and initially found the best results to be from 0.68-0.72V, which increases by 8-20% measuring each sample after 3 days. In this study, graphite cathode of a dry cell is replaced too by mixture of AC and RHA. Voltage drop is quite negligible for the mixture of 10% RHA. And, voltage is similar to the new battery in case of 100% activated carbon as cathode. If considered the environmental effect, using recycled activated carbon and rice husk ash will decrease the pollution en_US
dc.language.iso en en_US
dc.publisher Department of Mechanical and Production Engineering (MPE),Islamic University of Technology(IUT), Board Bazar, Gazipur, Bangladesh en_US
dc.title Waste to Energy : Potential of using activated carbon and rice husk ash in primary cells en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics