dc.identifier.citation |
[1] J. C. Kurnia, A. P. Sasmito, T. Shamim, and A. S. Mujumdar, “Numerical investigation of heat transfer and entropy generation of laminar flow in helical tubes with various cross sections,” Appl. Therm. Eng., vol. 102, pp. 849–860, 2016, doi: 10.1016/j.applthermaleng.2016.04.037. [2] M. Farzaneh-Gord, H. Ameri, and A. Arabkoohsar, “Tube-in-tube helical heat exchangers performance optimization by entropy generation minimization approach,” Appl. Therm. Eng., vol. 108, pp. 1279–1287, 2016, doi: 10.1016/j.applthermaleng.2016.08.028. [3] T. Srinivas and A. Venu Vinod, “Performance of an agitated helical coil heat exchanger using Al2O3/water nanofluid,” Exp. Therm. Fluid Sci., vol. 51, pp. 77–83, 2013, doi: 10.1016/j.expthermflusci.2013.07.003. [4] K. Narrein and H. A. Mohammed, “Influence of nanofluids and rotation on helically coiled tube heat exchanger performance,” Thermochim. Acta, vol. 564, pp. 13–23, 2013, doi: 10.1016/j.tca.2013.04.004. [5] M. A. Khairul, R. Saidur, M. M. Rahman, M. A. Alim, A. Hossain, and Z. Abdin, “Heat transfer and thermodynamic analyses of a helically coiled heat exchanger using different types of nanofluids,” Int. J. Heat Mass Transf., vol. 67, pp. 398–403, 2013, doi: 10.1016/j.ijheatmasstransfer.2013.08.030. [6] T. Srinivas and A. Venu Vinod, “Heat transfer intensification in a shell and helical coil 52 heat exchanger using water-based nanofluids,” Chem. Eng. Process. Process Intensif., vol. 102, pp. 1–8, 2016, doi: 10.1016/j.cep.2016.01.005. [7] N. Kannadasan, K. Ramanathan, and S. Suresh, “Comparison of heat transfer and pressure drop in horizontal and vertical helically coiled heat exchanger with CuO/water based nano fluids,” Exp. Therm. Fluid Sci., vol. 42, pp. 64–70, 2012, doi: 10.1016/j.expthermflusci.2012.03.031. [8] J. Fernández-Seara, C. Piñeiro-Pontevedra, and J. A. Dopazo, “On the performance of a vertical helical coil heat exchanger. Numerical model and experimental validation,” Appl. Therm. Eng., vol. 62, no. 2, pp. 680–689, 2014, doi: 10.1016/j.applthermaleng.2013.09.054. [9] C. Gnanavel, R. Saravanan, and M. Chandrasekaran, “Heat transfer augmentation by nano-fluids and Spiral Spring insert in Double Tube Heat Exchanger-A numerical exploration,” Mater. Today Proc., vol. 21, no. xxxx, pp. 857–861, 2020, doi: 10.1016/j.matpr.2019.07.602. [10] G. Huminic and A. Huminic, “Heat transfer characteristics in double tube helical heat exchangers using nanofluids,” Int. J. Heat Mass Transf., vol. 54, no. 19–20, pp. 4280– 4287, 2011, doi: 10.1016/j.ijheatmasstransfer.2011.05.017. [11] V. Kumar, S. Saini, M. Sharma, and K. D. P. Nigam, “Pressure drop and heat transfer study in tube-in-tube helical heat exchanger,” Chem. Eng. Sci., vol. 61, no. 13, pp. 4403– 4416, 2006, doi: 10.1016/j.ces.2006.01.039. [12] H. B. Ma, C. Wilson, Q. Yu, K. Park, U. S. Choi, and M. Tirumala, “An experimental investigation of heat transport capability in a nanofluid oscillating heat pipe,” J. Heat 53 Transfer, vol. 128, no. 11, pp. 1213–1216, 2006, doi: 10.1115/1.2352789. [13] T. J. Rennie and V. G. S. Raghavan, “Experimental studies of a double-pipe helical heat exchanger,” Exp. Therm. Fluid Sci., vol. 29, no. 8, pp. 919–924, 2005, doi: 10.1016/j.expthermflusci.2005.02.001. [14] M. Shafahi, V. Bianco, K. Vafai, and O. Manca, “An investigation of the thermal performance of cylindrical heat pipes using nanofluids,” Int. J. Heat Mass Transf., vol. 53, no. 1–3, pp. 376–383, 2010, doi: 10.1016/j.ijheatmasstransfer.2009.09.019. [15] Z. Wu, L. Wang, and B. Sundén, “Pressure drop and convective heat transfer of water and nanofluids in a double-pipe helical heat exchanger,” Appl. Therm. Eng., vol. 60, no. 1–2, pp. 266–274, 2013, doi: 10.1016/j.applthermaleng.2013.06.051. [16] W. Xu, S. Wang, G. Liu, Q. Zhang, M. Hassan, and H. Lu, “Experimental and numerical investigation on heat transfer of Therminol heat transfer fluid in an internally four-head ribbed tube,” Int. J. Therm. Sci., vol. 116, pp. 32–44, 2017, doi: 10.1016/j.ijthermalsci.2017.01.020. [17] B. Ghasemi and S. M. Aminossadati, “Brownian motion of nanoparticles in a triangular enclosure with natural convection,” Int. J. Therm. Sci., vol. 49, no. 6, pp. 931–940, 2010, doi: 10.1016/j.ijthermalsci.2009.12.017. [18] R. S. Vajjha and D. K. Das, “Experimental determination of thermal conductivity of three nanofluids and development of new correlations,” Int. J. Heat Mass Transf., vol. 52, no. 21–22, pp. 4675–4682, 2009, doi: 10.1016/j.ijheatmasstransfer.2009.06.027. [19] R. S. Vajjha, D. K. Das, and D. P. Kulkarni, “Development of new correlations for 54 convective heat transfer and friction factor in turbulent regime for nanofluids,” Int. J. Heat Mass Transf., vol. 53, no. 21–22, pp. 4607–4618, 2010, doi: 10.1016/j.ijheatmasstransfer.2010.06.032. [20] M. Corcione, “Heat transfer features of buoyancy-driven nanofluids inside rectangular enclosures differentially heated at the sidewalls,” Int. J. Therm. Sci., vol. 49, no. 9, pp. 1536–1546, 2010, doi: 10.1016/j.ijthermalsci.2010.05.005. [21] H. Stevenson, “Laser Velocimetry and Particle Sizing . Edited by H . DOYLE,” vol. 103, 1981. [22] F. Kreith et al., Heat and mass transfer. 2004. [23] R. L. Manlapaz and S. W. Churchill, “Fully developed laminar flow in a helically coiled tube of finite pitch,” Chem. Eng. Commun., vol. 7, no. 1–3, pp. 57–78, 1980, doi: 10.1080/00986448008912549. |
en_US |