dc.identifier.citation |
[1] AHM. Mustain Billah Ph.D, “Demand for Wood Energy in Bangladesh,” Energy and Environment. [2] A. H. Baky and M. Nazmul, “ES2014-6756 Production of Biogas by Anaerobic Digestion of Food waste and Process Simulation,” pp. 1–7, 2016. [3] H.-P. Schmidt, “Economically and ecologically optimising biogas production with biochar.” Ithaka Journal 1/2012, p. 57–60 (1); Ithaka Journal 1/2012, p. 61–66 (2. [4] M. R. Al Mamun and S. Torii, “Removal of Hydrogen Sulfide (H2S) from Biogas Using Zero-Valent Iron,” J. Clean Energy Technol., 2015, doi: 10.7763/jocet.2015.v3.236. [5] Non-Renewable Sources of Energy. . [6] R. Agrahari and G. N. Tiwari, “The Production of Biogas Using Kitchen Waste,” Int. J. Energy Sci., vol. 3, no. 6, p. 408, 2013, doi: 10.14355/ijes.2013.0306.05. [7] G. T. Tucho, H. C. Moll, A. J. M. Schoot Uiterkamp, and S. Nonhebel, “Problems with biogas implementation in developing countries from the perspective of labor requirements,” Energies, 2016, doi: 10.3390/en9090750. [8] F. Tasnim, S. A. Iqbal, and A. R. Chowdhury, “Biogas production from anaerobic co-digestion of cow manure with kitchen waste and Water Hyacinth,” Renew. Energy, vol. 109, no. 2017, pp. 434–439, 2017, doi: 10.1016/j.renene.2017.03.044. [9] S. C. Baldasano J.M, “Emission of Greenhouse Gases From Anaerobic Digestion Processes : Comparison With Other Msw Treatments,” 2nd Int. Symp. Anaerob. Dig. Solid 33 Waste, 1999. [10] H. Hartmann and B. K. Ahring, “Strategies for the anaerobic digestion of the organic fraction of municipal solid waste: An overview,” Water Science and Technology. 2006, doi: 10.2166/wst.2006.231. [11] S. A. Iqbal, S. Rahaman, M. Rahman, and A. Yousuf, “Anaerobic digestion of kitchen waste to produce biogas,” 2014, doi: 10.1016/j.proeng.2014.11.787. [12] G. Kiely, G. Tayfur, C. Dolan, and K. Tanji, “Physical and mathematical modelling of anaerobic digestion of organic wastes,” Water Res., vol. 31, no. 3, pp. 534–540, 1997, doi: 10.1016/S0043-1354(96)00175-3. [13] J. Biswas, R. Chowdhury, and P. Bhattacharya, “Kinetic studies of biogas generation using municipal waste as feed stock,” Enzyme Microb. Technol., 2006, doi: 10.1016/j.enzmictec.2005.07.004. [14] J. Biswas, R. Chowdhury, and P. Bhattacharya, “Mathematical modeling for the prediction of biogas generation characteristics of an anaerobic digester based on food/vegetable residues,” Biomass and Bioenergy, 2007, doi: 10.1016/j.biombioe.2006.06.013. [15] P. Chaiprasert, “Biogas Production from Agricultural Wastes in Thailand,” pp. 63–65, 2011. [16] S. T. Kale, S. P. and Mehetre, S. T., 2006,, Kale, S. P. and Mehetre, “‘Kitchen Waste Based Biogas Plant,’” Nucl. Agric. Biotechnol. Div., 2006. [17] A. Cojolon, C.L., Estrada, Toledo, E. and Ciferri, “Technical, Socio/Economical and 34 Using, Environmental Aspects of Biogas Generation Rural Household Waste,” 2008. [18] M. C. Tomei, C. M. Braguglia, G. Cento, and G. Mininni, “Modeling of Anaerobic digestion of sludge,” Critical Reviews in Environmental Science and Technology. 2009, doi: 10.1080/10643380801977818. [19] A. Isci and G. N. Demirer, “Biogas production potential from cotton wastes,” vol. 32, pp. 750–757, 2007, doi: 10.1016/j.renene.2006.03.018. [20] D. J. Batstone et al., “The IWA Anaerobic Digestion Model No 1 (ADM1).,” Water Sci. Technol., 2002, doi: 10.2166/wst.2002.0292. [21] B. Sri Bala Kameswari, K., Velmurugan and R. A. Thirumaran, K. and Ramanujam, Biomethanation of Vegetable Market Waste – Untapped Carbon Trading Opportunities. 2007. [22] S. Kamaraj, Biogas based power generation from fruit and vegetable waste through bi-phasic digestion”,. Boston, 2008. [23] R. P. Agrahari and G. N. Tiwari, “Parametric study of portable floating type biogas plant,” pp. 404–410. [24] M. Anjum and A. Khalid, “Anaerobic co-digestion of municipal solid organic waste with melon residues to enhance biodegradability and biogas production,” pp. 388–395, 2012, doi: 10.1007/s10163-012-0082-9. [25] H. M. El-mashad and R. Zhang, “Bioresource Technology Biogas production from co-digestion of dairy manure and food waste,” Bioresour. Technol., vol. 101, no. 11, pp. 4021–4028, 2010, doi: 10.1016/j.biortech.2010.01.027. 35 [26] “Asian Journal on Energy and Environment,” vol. 10, no. 01, pp. 19–27, 2009. [27] M. S. Fountoulakis, I. Petousi, and T. Manios, “Co-digestion of sewage sludge with glycerol to boost biogas production,” Waste Manag., vol. 30, no. 10, pp. 1849–1853, 2010, doi: 10.1016/j.wasman.2010.04.011. [28] K. Sheng, X. Chen, J. Pan, R. Kloss, and Y. Wei, “Effect of ammonia and nitrate on biogas production from food waste via anaerobic digestion,” Biosyst. Eng., vol. 116, no. 2, pp. 205–212, 2013, doi: 10.1016/j.biosystemseng.2013.08.005. [29] E. Kovács, R. Wirth, G. Maróti, Z. Bagi, G. Rákhely, and K. L. Kovács, “Biogas Production from Protein-Rich Biomass : Fed-Batch Anaerobic Fermentation of Casein and of Pig Blood and Associated Changes in Microbial Community Composition,” vol. 8, no. 10, pp. 1–18, 2013, doi: 10.1371/journal.pone.0077265. [30] I. Andri, A. Pina, P. Ferrão, J. Fournier, B. Lacarrière, and O. Le Corre, “ScienceDirect ScienceDirect ScienceDirect Assessing the feasibility of using the heat demand-outdoor Usa for Niramol district temperature function a long-term heat demand forecast Biogas Production Potential from Raw and,” Energy Procedia, vol. 138, pp. 205–210, 2017, doi: 10.1016/j.egypro.2017.10.151. [31] M. Asmare, “Design of Cylindrical Fixed dome Bio Digester in the Condominium Houses for Cooking Purpose at Dibiza Site, East Gojjam, Ethiopia,” Am. J. Energy Eng., vol. 2, no. 1, p. 16, 2014, doi: 10.11648/j.ajee.20140201.12. |
en_US |