Investigation of Solar Cells Performance by AMPS-1D Simulation

Show simple item record

dc.contributor.author Siddique, Md. Nawshad
dc.contributor.author Shaien, Al Shahriar
dc.contributor.author Rahman, Shaon
dc.contributor.author Rahman, Md. Musfiqur
dc.date.accessioned 2022-04-25T07:14:45Z
dc.date.available 2022-04-25T07:14:45Z
dc.date.issued 2015-10-15
dc.identifier.citation 1. Peter Gevorkian, Sustainable energy systems engineering: the complete green building design resource, p. 498, McGraw-Hill Professional, New York, USA, 2007, ISBN: 978-0071473590. 2. Marius Grundmann, The Physics of Semiconductors: An Introduction Including Nanophysics and Applications, 2nd ed., p. 3, Springer-Verlag, Berlin, Germany, 2010, ISBN: 978-3642138843. 3. K. A. Tsokos, Physics for the IB Diploma, 5th ed., Cambridge University Press, Cambridge, UK, 2008, ISBN: 978-0521708203. 4. Urjart. (2008) Solar Cell: Basic Principle of Operation. [Online]. Available: http://urjart.wordpress.com/2008/10/05/solar-cell-%E2%80%93-basic-principle-of-operation/ 5. M. A. Green, "Solar cell fill factors: General graph and empirical expressions," Solid-State Electronics, vol. 24, no. 8, pp. 788-789, 1981. 6. Zh. I. Alferov, “Heterostructures and their applications in optoelectronics”, Akademiia Nauk SSSR, vol. 7, pp. 28-40, 1976. 7. Stephen J. Fonash, Solar Cell Device Physics, 2nd Ed., Academic Press, Elsevier, Massachusetts, USA, 2010, ISBN: 978-0123747747. 8. U. S. Department of Energy. (2011) Energy Basics. [Online]. Available:http://www.eere.energy.gov/basics/renewable_energy/pv_cell_structures.html 9. Peter Wurfel, Physics of Solar Cells: From Principles to New Concepts, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2005, ISBN: 3-527-40428-7 10. L. J. A. Koster, E. C. P. Smits, V. D. Mihailetchi, and P. W. M. Blom, “Device model for the operation of polymer/fullerene bulk heterojunction solar cells”, Physical Review B, vol. 72, pp. 085205-1 - 085205-9, 2005, DOI: 10.1103/PhysRevB.72.085205 11. T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of Silicon solar cells”, IEEE Transactions on Electron Devices, vol. ED-31, pp. 711-716, 1984. 12. L.W. James,“III-V Compound heterojunction solar cells”, in Proceedings of IEEE International Electron Devices Meeting, vol. 21, pp. 87-90, Washington, USA, 1975. 13. Alvin D. Compaan, Amorphous and Nanocrystalline Silicon Science and Technology, 2004, edited by Gautam Ganguly, Michio Kondo, Eric A. Schiff, Reinhard Carius, and Rana Biswas (Mater. Res. Soc. Symp. Proc. 808, Warrendale, PA, A7.6, 2004 14. Xuanzhi Wu,”High-efficiency polycrystalline CdTe thin-film solar cells”, Solar Energy 77, pp.803, 2004. 15. M. S. Hossain, N. Amin, M. A. Matin, M.M. Aliyu, T. Razykov, K. Sopian, ”A Numerical Study on The High Efficiency Ultra Thin ZnxCd1-xS/CdTe Solar Cell ”, Chalcogenide Letters, vol.8, pp. 263-272, 2011. 16. Nowshad Amin, Kamaruzzaman Sopian, Makoto Konagai, “Numerical modeling of CdS/CdTe and CdS/CdTe/ZnTe solar cells as a function of CdTe thickness”,Solar Energy Materials and Solar Cells (SOLMAT) 91,pp. 1202 , 2007. 17. D. L. Batzner, A. Romeo, H. Zogg, R. Wendt, A. N. Tiwari,” Development of Efficient and Stable Back Contact CdTe/CdS Solar cell”, Thin Solid Films 387, pp.151 , 2001. 18. X. Wu, J.C. Keane, R.G. Dhere, C. DeHart, D.S. Albin, A. Duda, T.A. Gessert, S. Asher, D.H. Levi, P. Sheldon, “16.5%-efficient CdS/CdTe polycrystalline thin-film solar cell”, Proc. of 17th European Photovolt. Sol. Energy Conf, Munich, Germany, 2001. 58 19. Nowshad Amin, Akira Yamada and Makoto Konagai, “Effect of ZnTe and CdZnTe Alloys at the Back Contact of 1-μm-Thick CdTe Thin Film Solar Cells”, Japanese Journal of Applied Physics 41(5A), Part 1, 2002. 20. I.O. Oladeji, L. Chow, C.S. Ferekides, V. Viswanathan, Z. Zhao,” Metal/CdTe/CdS/Cd1−xZnxS/TCO/glass: A new CdTe thin film solar cell structure”, SOLMAT. 61, pp.203, 2000. 21. F.A. Abouel fotouh, R.Al Awadi, M.M. Abd-Elnaby,” Growth optimization of ZnxCd1 − xS thin films by radio frequency magnetron co-sputtering for solar cell applications”, Thin Solid Films 96, pp.169 , 1982. 22. S Chandrasekhar, S.Martinuzzi, F.Z.Nataren,”Improved Efficiency of CdZnS Thin Film Solar Cells”, Canadian Journal of Physics 63, pp.716 , 1985. 23. P.R.Ram, R.Thangaraj, O.P. Agnihotri,” Thin film CdZnS/CuInSe2 solar cells by spray pyrolysis”, Bulletin of Materials Science 8, pp.279 , 1986. 24. K.T.R. Reddy, P.J. Reddy, “Studies of ZnxCd1-xS films and ZnxCd1-xS/CuGaSe2heterojunction solar cells”, Journal of Physics D: Applied Physics 25, pp.1345 , 1992. 25. R.N. Bhattacharya, M.A. Contreras, B. Egaas, R.N. Noufi, A. Kanevce, J.R. Sites, “Development of efficient and stable back contacts on CdTe/CdS solar cells, Thin Solid Films”, Applied Physics Letters 89, 253503/1 , 2006. 26. O.M. Hussain, P.S. Reddy, B.S. Naidu, S. Uthanna, P.J. Reddy,” Characterization of thin film ZnCdS/CdTe Solar cells”, Sem. Sc. and Tech. 6, pp.690 , 1991. 27. I.O. Oladeji, L. Chow,” Synthesis and Processing of CdS/ZnS Multilayer Films for Solar Cell Application”, Thin Solid Films 474, pp.77, 2005. 28. L.C. Burton, T.L. Hench, “ZnxCd1−xS films for use in heterojunction solar cells,”, Appl. Phys. Lett. 29 (a), pp.612 , 1976. 29. T.L. Chu, S.S. Chu, J. Britt, C. Ferrikide and O.Q. Wu,” Cadmium Zinc Sulfide Films and Heterojunctions”, J. Appl. Phys. 70 (5), pp.2688, 1991. 30. S.Y. Yin, A.L. Fahrenbruch and R.H. Bube, “Chemical Solution Deposition of Inorganic Films”,J. Appl. Phys. 49 (3), pp.1294 , 1978. 31. M.P. Valkonen, T. Kanniainien, S. Lindroos, M. Leskela and E. Rauhala,”Growth of ZnS, CdS and multilayer ZnS/CdS thin film by SILAR technique”, Appl. Surf. Sci. 115, pp.386 1997. 32. M. Gunasekaran, M. Ichimura,“ Deposition of Cd1-xZnxS (0 ≤x ≤1) Alloys by Photochemical Depositions”, Japanese Journal of Applied Physics 44, pp.7345, 2005. 33. J. Zhou, X. Wu, G. Teeter, B. To, Y. Yan, R.G. Dhere, T. Gessert, “CBD Cd1-xZnxS thin films and there application in CdTe solar cell”, Phy. St. Sol. 241(3), pp.775 , 2004. 34. M. Burgelman, J. Verschraegen, S. Degrave, P. Nollet, Prog.” Modeling thin-film PV devices”, Photovolt. Res. Appl., vol.12, pp.143, 2004. 35. S.J. Fonash et al., www.cneu.psu.edu/amps, accessed 2008. 36. M. Gloeckler, A. L. Fahrenbruch, and J. R. Sites, ”Numerical Modeling of CIGS and CdTe Solar Cell: setting the baselines”, Proceedings of the 3rd World Conf. on Photovoltaic Energy Conversion, May 11-18, , Osaka, Japan,pp.491-494, 2003. 37. Mohammadnor Imamzai, mohammadreza Aghaei, Nowshad Amin,” Numerical modeling and analysis of CdS/Cd1−xZnxTe solar cells as a function of CdZnTe doping, lifetime and thickness”, 4th International Conference on Photonics (ICP), IEEE, 2013. 59 38. T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of Silicon solar cells”, IEEE Transactions on Electron Devices, vol. ED-31, pp. 711-716, 1984. 39. B. G. Streetman, and S. K. Banerjee, Solid State Electronic Devices, 6th Ed., Prentice-Hall Inc., New Jersey, USA, 2006, ISBN: 978-8120330207. 40. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39)”,Progress in Photovoltaics: Research and Applications, vol. 20, pp. 12-20, 2012.. 41. M. Meyer, and R.A. Metzger, “Flying high: The Commercial Satellite Industry Convert to Compound Semiconductor Solar Cells”, Compound Semiconductor, vol. 2, no. 6, pp. 22-24, 1996. 42. A. Goetzberger, C. Heblinga, and H. Schockb, “Photovoltaic materials, history, status and outlook”, Materials Science and Engineering: R: Reports, vol. 40, no. 1, pp. 1-46, 2003. 43. A. S. Brown, U. K. Mishra, J. A. Henige, and M. J. Delaney, Journal of Vacuum Science & Technology B, vol. 6, no. 2, pp. 678-681, 1988. 44. Harish Palaniappan. (2012) Solar Cells. [Online]. Available: http://solar_cells.tripod.com/notes_sel_1.html 45. M. S. Leite, R. L. Woo, W. D. Hong, D. C. Law, and H. A. Atwater, “Wide-band-gap InAlAs solar cell for an alternative multijunction approach”, Applied Physics Letters, vol. 98, pp. 093502-1 - 093502-3, 2011, DOI: 10.1063/1.3531756 46. J.W. Matthews, and A.E. Blakeslee, “Defects in epitaxial multilayers: I. Misfit dislocations”, Journal of Crystal Growth, vol. 27, pp. 118- 125, 1974. 47. H. J. Scheel, P. Capper, Crystal Growth Technology: From Fundamentals and Simulation to Large-scale Production, p. 307, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2008, ISBN: 978- 3527317622 48. E. Popova, J. Faure-Vincent, C. Tiusan, C. Bellouard, H. Fischer, M. Hehn, F. Montaigne, M. Alnot, S. Andrieu, and A. Schuhl, “Epitaxial MgO layer for low-resistance and coupling-free magnetic tunnel junctions”, Applied Physics Letters, vol. 81, no. 6, pp. 1035-1037, 2002. 49. P. K. Nayak, G. G. Belmonte, A. Kahn, J. Bisquert, and D. Cahen, “Photovoltaic efficiency limits and material disorder”, Energy and Environmental Science, 2012, vol. 5, pp. 6022-6039, DOI: 10.1039/c2ee03178g 50. K. Van Nieuwenhuysen, F. Duerinckx, I. Kuzma, D. van Gestel, G. Beaucarne, J. Poortmans, “Progress in epitaxial deposition on low-cost substrates for thin-film crystalline silicon solar cells at IMEC”, Journal of Crystal Growth, vol. 287, pp. 438–441, 2006. 51. J. G. Fossum, “Physical operation of back-surface-field silicon solar cells,” IEEE Transactions on Electron Devices, vol. 24, no. 4, pp. 322-325, Apr. 1977. 52. Physical Technical Institute. (2005) NSM Archive - Physical Properties of Semiconductors. [Online]. Available: http://www.ioffe.ru/SVA/NSM/Semiconductor. 53. Harish Palaniappan. (2012) Solar Cells. [Online]. Available: http://solar_cells.tripod.com/notes_sel_1.html en_US
dc.identifier.uri http://hdl.handle.net/123456789/1404
dc.description Supervised by Dr. Md. Ashraful Hoque, Professor, Electrical and Electronic Engineering(EEE), Islamic University of Technology (IUT), Gazipur. en_US
dc.description.abstract Energy conversion efficiency is a major issue for photovoltaic cells today. Researchers are continuously trying to improve the efficiency level of photovoltaic devices by introducing new materials and advanced concepts. The target is to reach a high efficiency level within affordable cost, which will lead to a mass generation of electricity using photovoltaic devices. In this work, a new structure of CdS/CdTe based solar cell is proposed, where two of the fundamental drawbacks of traditional CdS/CdTe cell are addressed. The relatively low bandgap of CdS window layer, along with a significant lattice mismatch between CdS and CdTe decrease the efficiency of conventional CdS/CdTe solar cell. This work proposes a novel structure where both window (CdS) and absorber (CdTe) layer are replaced by two II- VI ternary alloys, namely, Cd1-xZnxS and Cd1-xZnxTe respectively. These alloys give advantage of variable bandgap by varying Zn concentration in the alloys. A new structure of TCO/ZnO/Cd1-xZnxS/Cd1-xZnxTe/Cu2Te/Ni is proposed, which can easily be achieved by replacing S by Te during various fabrication processes. Numerical analysis was performed with AMPS 1D software and an efficiency of 24.643% was achieved through bandgap engineering, which is higher than the conventional CdS/CdTe solar cell. The solar cell was also found to be stable at higher temperature. A modified solar cell structure was proposed, consisting of TCO/ZnO/Cd1-xZnxS/Cd1- xZnxTe/Cu2Te/Ni in which alloy composition was varied in the window layer for achieving a better windowing effect that gives better Jsc. But it was accompanied by detrimental Voc and FF, which were then improved by varying alloy composition in the absorber layer which improved lattice matching. A small range of Zn x% around x = 0.2 was found, when the proposed two-fold treatment eventually yielded a better efficiency of 24.643%. The lattice mismatching of modified Cd0.8Zn0.2S /Cd0.8Zn0.2Te was found to be 10.16%, which resembles the original CdS/CdTe lattice mismatch. However, this structure yielded better Jsc and Voc, which ultimately resulted in a high efficiency solar cell. The cell also showed very good temperature stability, giving an efficiency gradient of 0.05%/C0.This study shows that careful modification of bandgaps of window and absorber layer can yield better efficiency. en_US
dc.language.iso en en_US
dc.publisher Department of Electrical and Electronic Engineering, Islamic University of Technology (IUT), Board Bazar, Gazipur-1704, Bangladesh en_US
dc.title Investigation of Solar Cells Performance by AMPS-1D Simulation en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics