Introduction, Characterization and Efficiency Optimization of a Heterojunction Solar Cell with GaAs as Back Surface Field (BSF) Layer Using ADEPT/F

Show simple item record

dc.contributor.author Aziz, Ashiq Ibn
dc.contributor.author Hasan, Sakibul
dc.contributor.author Muntaha, Sidratul
dc.contributor.author Noman, Ahmed
dc.date.accessioned 2022-04-26T08:41:51Z
dc.date.available 2022-04-26T08:41:51Z
dc.date.issued 2015-11-15
dc.identifier.citation 1. Peter Gevorkian, Sustainable energy systems engineering: the complete green building design resource, p. 498, McGraw-Hill Professional, New York, USA, 2007, ISBN: 978-0071473590. 2. Marius Grundmann, The Physics of Semiconductors: An Introduction Including Nanophysics and Applications, 2nd ed., p. 3, Springer-Verlag, Berlin, Germany, 2010, ISBN: 978-3642138843. 3. K. A. Tsokos, Physics for the IB Diploma, 5th ed., Cambridge University Press, Cambridge, UK, 2008, ISBN: 978-0521708203. 4. Urjart. (2008) Solar Cell: Basic Principle of Operation. [Online]. Available: http://urjart.wordpress.com/2008/10/05/solar-cell-%E2%80%93-basic-principle-of-operation/ 5. M. A. Green, "Solar cell fill factors: General graph and empirical expressions," Solid-State Electronics, vol. 24, no. 8, pp. 788-789, 1981. 6. Zh. I. Alferov, “Heterostructures and their applications in optoelectronics”, Akademiia Nauk SSSR, vol. 7, pp. 28-40, 1976. 7. Stephen J. Fonash, Solar Cell Device Physics, 2nd Ed., Academic Press, Elsevier, Massachusetts, USA, 2010, ISBN: 978-0123747747. 8. U. S. Department of Energy. (2011) Energy Basics. [Online]. Available: http://www.eere.energy.gov/basics/renewable_energy/pv_cell_structures.html 9. Peter Wurfel, Physics of Solar Cells: From Principles to New Concepts, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2005, ISBN: 3-527-40428-7 10. L. J. A. Koster, E. C. P. Smits, V. D. Mihailetchi, and P. W. M. Blom, “Device model for the operation of polymer/fullerene bulk heterojunction solar cells”, Physical Review B, vol. 72, pp. 085205-1 - 085205-9, 2005, DOI: 10.1103/PhysRevB.72.085205 11. T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of Silicon solar cells”, IEEE Transactions on Electron Devices, vol. ED-31, pp. 711-716, 1984. 43 12. L.W. James, “III-V Compound heterojunction solar cells”, in Proceedings of IEEE International Electron Devices Meeting, vol. 21, pp. 87-90, Washington, USA, 1975. 13. J.E. Sutherland, and J.R. Hauser, “Optimum bandgap of several III–V heterojunction solar cells”, Solid-State Electronics, vol. 22, no. 1, pp. 3-5, 1979. 14. B. G. Streetman, and S. K. Banerjee, Solid State Electronic Devices, 6th Ed., Prentice-Hall Inc., New Jersey, USA, 2006, ISBN: 978-8120330207. 15. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39)”, Progress in Photovoltaics: Research and Applications, vol. 20, pp. 12-20, 2012. 16. F. Dimroth, “High-efficiency solar cells from III-V compound semiconductors”, Physica Status Solidi (c), vol. 3, no. 3, pp. 373-379, 2006. 17. B. Garcia, Jr., “Indium Gallium Nitride Multijunction Solar Cell Simulation Using Silvaco Atlas”, M. Sc. Thesis, Naval Postgraduate School, Monterey, California, June 2007. 18. M. Meyer, and R.A. Metzger, “Flying high: The Commercial Satellite Industry Convert to Compound Semiconductor Solar Cells”, Compound Semiconductor, vol. 2, no. 6, pp. 22-24, 1996. 19. J.J. Schermer, G.J. Bauhuis, P. Mulder, E.J. Haverkamp, J. van Deelen, A.T.J. van Niftrik, and P.K. Larsen, “Photon confinement in high-efficiency, thin-film III–V solar cells obtained by epitaxial lift-off”, Thin Solid Films, vol. 511, pp. 645 – 653, 2006. 20. T.V. Torchynska, and G.P. Polupan, “III-V material solar cells for space application”, Semiconductor Physics, Quantum Electronics & Optoelectronics, vol. 5, no. 1, pp. 63-70, 2002. 21. A. Goetzberger, C. Heblinga, and H. Schockb, “Photovoltaic materials, history, status and outlook”, Materials Science and Engineering: R: Reports, vol. 40, no. 1, pp. 1-46, 2003. 22. J. L. Gray and Michael McLennan. (2008) Adept. [Online]. Available: http://nanohub.org/resources/adept/ 44 23. A. S. Brown, U. K. Mishra, J. A. Henige, and M. J. Delaney, Journal of Vacuum Science & Technology B, vol. 6, no. 2, pp. 678-681, 1988. 24. L. Ajili, G. Scalari, N. Hoyler, M. Giovannini, and J. Faist, “InGaAs–AlInAs/InP terahertz quantum cascade laser”, Applied Physics Letters, vol. 87, pp. 141107-1 - 141107-3, 2005, DOI: 10.1063/1.2081122 25. M. S. Leite, R. L. Woo, W. D. Hong, D. C. Law, and H. A. Atwater, “InAlAs epitaxial growth for wide band gap solar cells” in IEEE Proceedings of 37th Photovoltaic Specialists Conference, pp. 780-783, Seattle, USA, 2011. 26. M. S. Leite, R. L. Woo, W. D. Hong, D. C. Law, and H. A. Atwater, “Wide-band-gap InAlAs solar cell for an alternative multijunction approach”, Applied Physics Letters, vol. 98, pp. 093502-1 - 093502-3, 2011, DOI: 10.1063/1.3531756 27. ECEn IMMERSE Web Team, Brigham Young University. (2009) Energy Gap in III-V Ternary Semiconductors. [Online]. Available: http://www.cleanroom.byu.edu/EW_ternary.phtml 28. Ioffe Physical Technical Institute. (2005) NSM Archive - Physical Properties of Semiconductors. [Online]. Available: http://www.ioffe.ru/SVA/NSM/Semicond/ 29. Harish Palaniappan. (2012) Solar Cells. [Online]. Available: http://solar_cells.tripod.com/notes_sel_1.html 30. Stuart Bowden. (2010) Energy of a Photon | pveducation.org. [Online]. Available: http://www.pveducation.org/pvcdrom/properties-of-sunlight/energy-of-photon 31. J. G. Fossum, “Physical operation of back-surface-field silicon solar cells,” IEEE Transactions on Electron Devices, vol. 24, no. 4, pp. 322-325, Apr. 1977. 32. L. Knuuttila, K. Kainu, M. Sopanen, and H. Lipsanen, “In(Ga)As quantum dots on Ge substrate,” Journal of Materials Science: Materials in Electronics, vol. 14, no. 5, pp. 349-352, 2003. 33. Ming-Chun Tseng, Ray-Hua Horng, Fan-Lei Wu, Snin-Nan Lin, Hsin Her Yu, and Dong-Sing Wuu, 45 “Crystalline quality and photovoltaic performance of InGaAs solar cells grown on GaAs substrate with large-misoriented angle,” Vacuum, vol. 86, no. 7, pp. 843-847, Feb. 2012. 34. Md. Sharafat Hossain, Nowshad Amin, M. A. Matin, M. Mannir Aliyu, Takhir Razykov, and Kamaruzzaman Sopian, “A numerical study on the prospects of high efficiency ultra thin ZnxCd1-xS/ CdTe solar cell,” Chalcogenide Letters, vol. 8, no. 3, pp. 263-272, Mar. 2011. 35. Lin Aiguo, Ding Jianning, Yuan Ningyi, Wang Shubo, Cheng Guanggui, and Lu Chao, “Analysis of the p+/p window layer of thin film solar cells by simulation,” Journal of Semiconductors, vol. 33, no. 2, pp. 023002-1 - 023002-6 , 2012. DOI:10.1088/1674-4926/33/2/023002 36. C. Lee, H. Efstathiadis, J. E. Raynolds, and P. Haldar, “Two-dimensional Computer Modeling of Single Junction a-Si:H Solar Cells”, in IEEE Proceedings of 34th Photovoltaic Specialists Conference, pp. 1118-1122, Philadelphia, USA, 2009. 37. S. Bothra, and J.M. Borrego, “Design of GaAs solar cells with low doped base,” Solar Cells, vol. 28, no. 1, pp. 95-102, Jan. 1990. 38. N. Bouarissa, and M. Boucenna, “Band parameters for AlAs, InAs and their ternary mixed crystals”, Physica Scripta, vol. 79, pp. 015701-1 - 015701-7 , 2009, DOI: 10.1088/0031-8949/79/01/015701 39. K. H. Goetz, D. Bimberg, H. Jurgensen, J. Selders, A.V.Solomonov, G.F.Glinskii, and M. Razeghi, “Optical and crystallographic properties and impurity incorporation of GaxIn1−xAs (0.44<x<0.49) grown by liquid phase epitaxy, vapor phase epitaxy, and metal organic chemical vapor deposition”, Journal of Applied Physics, vol. 54, no.8, pp.4543-4552, 1983. 40. J.W. Matthews, and A.E. Blakeslee, “Defects in epitaxial multilayers: I. Misfit dislocations”, Journal of Crystal Growth, vol. 27, pp. 118- 125, 1974. 41. H. J. Scheel, P. Capper, Crystal Growth Technology: From Fundamentals and Simulation to Large-scale 46 Production, p. 307, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2008, ISBN: 978- 3527317622 42. E. Popova, J. Faure-Vincent, C. Tiusan, C. Bellouard, H. Fischer, M. Hehn, F. Montaigne, M. Alnot, S. Andrieu, and A. Schuhl, “Epitaxial MgO layer for low-resistance and coupling-free magnetic tunnel junctions”, Applied Physics Letters, vol. 81, no. 6, pp. 1035-1037, 2002. 43. P. K. Nayak, G. G. Belmonte, A. Kahn, J. Bisquert, and D. Cahen, “Photovoltaic efficiency limits and material disorder”, Energy and Environmental Science, 2012, vol. 5, pp. 6022-6039, DOI: 10.1039/c2ee03178g 44. K. Van Nieuwenhuysen, F. Duerinckx, I. Kuzma, D. van Gestel, G. Beaucarne, J. Poortmans, “Progress in epitaxial deposition on low-cost substrates for thin-film crystalline silicon solar cells at IMEC”, Journal of Crystal Growth, vol. 287, pp. 438–441, 2006. 45. P. P. Boix, M.M.Wienk, R. A. J. Janssen, and G.Garcia-Belmonte, “Open-Circuit Voltage Limitation in Low- Bandgap Diketopyrrolopyrrole-Based Polymer Solar Cells Processed from Different Solvents”, Journal of Physical Chemistry C, vol. 115, pp. 15075–15080, 2011. 46. Q. Diduck, and M. Margala, "Ballistic deflection transistor and logic circuits based on same", U.S. Patent 7576353, Aug. 18, 2009. 47. E. W. Kiewra, S. J. Koester, D. K. Sadana, G. Shahldi, and Y. Sun, “Buried channel MOSFET using III-V compound semiconductors and high k gate dielectrics”, US Patent App. Pub. No. US2008/ 0296622 A1, Dec. 2008. 48. L. P. Sadwick, C. W. Kim, K. L. Tan, and D. C. Streit, “Schottky barrier heights of n-type and p-type Al0.48Ga0.52As”, IEEE Electron Device Letters, vol. 12, pp. 626-628, Nov. 1991. 49. A.W. Bett , F. Dimroth , G. Stollwerck, and O.V. Sulima, “III-V compounds for solar cell applications”, Applied Physics A, vol. 69, pp. 119–129, 1999, DOI: 10.1007/s003399900062 47 50. T. H. Glisson, J. R. Hauser, M. A. Littlejohn, and C. K. Williams, “Energy bandgap and lattice constant contours of III-V quaternary alloys”, Journal of Electronic Materials, vol. 7, no. 1, pp. 1-16, 1978. en_US
dc.identifier.uri http://hdl.handle.net/123456789/1421
dc.description Supervised by Prof. Dr. Md. Ashraful Hoque, Department of Electrical and Electronic Engineering Islamic University of Technology (IUT), Organisation of Islamic Cooperation (OIC), Dhaka, Bangladesh en_US
dc.description.abstract Energy is convertible from one form to another. So, energy conversion efficiency is a major issue for photovoltaic cells today. Researchers are continuously trying to improve the efficiency level of photovoltaic devices by introducing new materials and advanced concepts. The target is to reach a high efficiency level within affordable cost, which will lead to a mass generation of electricity using photovoltaic devices. In this work, a III-V heterojunction solar cell has been introduced and characterized, which uses an AlGaAs heterojunction as the working p-n junction. ADEPT/F, a 1D simulation software, was used throughout the whole work for the simulation of light J-V characteristics for different designs. Energy conversion efficiency for each design was calculated from its corresponding light J-V characteristics curve. An illumination level of 1000 W/m2 (AM1.5G standard) and a concentration level of 1 sun was considered for all the simulations in the work. The photovoltaic cell has an n-on-p structure,where the p-type AlGaAs layer acts as a base, and the n-type ZnS layer serves as the emitter. The base thickness was kept at 1μm. Germanium (Ge) substrate (p-doped) was used for the structure. Considering the high fabrication cost of III-V solar cells, a thin film solar cell design was proposed,which is only 2 μm thick (excluding the substrate thickness), and yields an efficiency of 12.16%.This efficiency was raised to 13.84% by using InP substrate, instead of Ge. We used ADEPT software for simulating J-V curve. From the curves, we got Open circuit voltage Voc and short circuit current Isc . Then, from these, Fill Factor and efficiency were calculated. en_US
dc.language.iso en en_US
dc.publisher Department of Electrical and Electronic Engineering, Islamic University of Technology (IUT), Board Bazar, Gazipur-1704, Bangladesh en_US
dc.title Introduction, Characterization and Efficiency Optimization of a Heterojunction Solar Cell with GaAs as Back Surface Field (BSF) Layer Using ADEPT/F en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics