Dynamic Modeling and Control of Permanent Magnet Synchronous Generator (PMSG) in Wind Energy Conversion System

Show simple item record

dc.contributor.author Haider, A. K. M .Sifat
dc.contributor.author Rahman, Showrov
dc.contributor.author Alaul, Nurul Ambia
dc.date.accessioned 2022-04-26T08:47:33Z
dc.date.available 2022-04-26T08:47:33Z
dc.date.issued 2015-11-30
dc.identifier.citation 1. Steve Leone (25 August 2011). "U.N. Secretary-General: Renewables Can End Energy Poverty". Renewable Energy World. 2. "Offshore stations experience mean wind speeds at 80 m that are 90% greater than over land on average. Evaluation of global wind power "Overall, the researchers calculated winds at 80 meters [300 feet] above sea level traveled over the ocean at approximately 8.6 meters per second and at nearly 4.5 meters per second over land [20 and 10 miles per hour, respectively]." Global Wind Map Shows Best Wind Farm Locations. Retrieved 30 January 2006. 3. Worldwide energy society. 4. E. Hau. Wind turbines: fundamentals, technologies, application, economics. Springer Verlag Berlin Heidelberg, 2000. 5. J. Kjellin. Experimental vertical axis wind turbine system. PhD thesis, Uppsala University, Sweden, 2010. 6. S. Eriksson. Direct driven generators for vertical axis wind turbines. PhD thesis, Uppsala University, Sweden, 2008. 7. P. Deglair. Analytical aerodynamic simulation tools for vertical axis wind turbines. PhD thesis, Uppsala University, Sweden, 2010. 8. J.S. Linder, Small-Signal Model of the Parallel-Plane Vacuum Diode. Electronics Letters, 1965. 1(5): pp. 141-142. 9. F.A. Lindholm and P.R. Gray, Large-Signal and Small-Signal Models for Arbitrarily-Doped Four-Terminal Field-Effect Transistors. IEEE Transactions on Electron Devices, 1966. 13(12): pp. 819-829. 10. F.C. Fitchen, Limiting Amplitude for Mosfet Small-Signal Models. Proceedings of the IEEE, 1967. 55(12): pp. 2176-2177. 11. F. Lindholm, A. and D.J. hamilton, A Systematic Modeling Theory for Solid State Device. Solid State Electronics, 1964(7): pp. 171. 12. B. Choi, et al. Control Strategy for Multi-Module ParallelConverter System. Power Electronics Specialists Conference. 1990. pp. 225-234. 13. T. Kohama, et al. Dynamic Analysis of Parallel-Module Converter System with Current Balance Controllers. Telecommunications Energy Conference. 1994. pp. 190-195. 14. C. Byungcho, Comparative Study on Paralleling Schemes of Converter Modules for Distributed Power Applications. IEEE Transactions on Industrial Electronics, 1998. 45(2): pp. 194-199. 15. Y. Panov and M.M. Jovanovic, Stabilityand Dynamic Performance of CurrentSharing Control for Paralleled Voltage Regulator Modules. IEEE Transactions on Power Electronics, 2002. 17(2): pp. 172-179. 16. N. Pogaku, M. Prodanovic, and T.C. Green, Modeling, Analysis and Testing of Autonomous Operation of anInverter-Based Microgrid. IEEE Transactions on Power Electronics, 2007. 22(2): pp. 613-625. 81 17. Y. Li, D.M. Vilathgamuwa, and L. Poh Chiang, Design, Analysis, and Real-Time Testing of a Controller for Multibus Microgrid System. IEEE Transactions on Power Electronics, 2004. 19(5): pp. 1195-1204. 18. A. Tabesh and R. Iravani, Small-SignalModel and Dynamic Analysis of Variable Speed Induction Machine Wind Farms, in IET Renewable Power Generation. 2008. p. 215-227. 19. E.A.A. Coelho, P.C. Cortizo, and P.F.D. Garcia, Small-Signal Stability for Parallel-Connected Inverters in Stand-Alone Ac Supply Systems. IEEE Transactions on Industry Applications, 2002. 38(2): pp. 533-542. 20. A.L. Shenkman, B. Axelrod, and V.Chudnovsky, A New Simplified Model of the Dynamics of the Current-Fed Parallel Resonant Inverter. IEEE Transactions on Industrial Electronics, 2000. 47(2): pp. 282-286. 21. Myers, H. P., Introductory Solid State Physics, 2nd. Ed., Taylor & Francis, 1997. 22. Hellweg, Paul. The Insomniac's Dictionary. Facts On File Publications. p. 115. ISBN 0-8160-1364-0. 23. Brady, George Stuart; Clauser, Henry R; Vaccari, John A (2002). Materials Handbook: An Encyclopedia for Managers. McGraw-Hill Professional. p. 577. ISBN 0-07-136076-X. 24. Cullity, B. D.; C. D. Graham (2008). Introduction to Magnetic Materials. Wiley-IEEE. p. 485. ISBN 0-471-47741-9. 25. Arnold-Alnico Magnets. Arnoldmagnetics.com. Retrieved on 2011-07-30. 26. Hubert, Alex; Rudolf Schäfer (1998). Magnetic domains: the analysis of magnetic microstructures. Springer. p. 557. ISBN 3-540-64108-4. 27. "Standard Specifications for Permanent Magnet Materials (MMPA Standard No. 0100-00)" (PDF). Magnetic Materials Producers Association. Retrieved 9 September 2015. 28. Campbell, Peter (1996). Permanent magnet materials and their application. UK: Cambridge University Press. pp. 35–38. ISBN 0-521-56688-6. 29. "Evolution of Fe-Co rich particles in Alnico 8 alloy thermomagnetically treated at 800°C". Materials science and technology 16 (9): 1023–1028. 2000. doi:10.1179/026708300101508810. 30. Frequently Asked Questions. Magnetsales.com. Retrieved on 2011-07-30. 31. Carter, C. Barry; Norton, M. Grant (2007). Ceramic Materials: Science and Engineering. Springer. pp. 212–15. ISBN 0-387-46270-8. 32. Okamoto, A. (2009). "The Invention of Ferrites and Their Contribution to the Miniaturization of Radios". 2009 IEEE Globecom Workshops. pp. 1–42. doi:10.1109/GLOCOMW.2009.5360693. ISBN 978-1-4244-5626-0. 33. Shriver, D.F.; et al. (2006). Inorganic Chemistry. New York: W.H. Freeman. ISBN 0-7167-4878-9. 34. Ullah, Zaka; Atiq, Shahid; Naseem, Shahzad (2013). "Influence of Pb doping on structural, electrical and magnetic properties of Sr-hexaferrites". Journal of Alloys and Compounds 555: 263–267. doi:10.1016/j.jallcom.2012.12.061. 35. "Ferrite Permanent Magnets". Arnold Magnetic Technologies. Retrieved 18 January 2014. 82 36. Chemical Products Corporation. Retrieved 18 January 2014. 37. Hill Technical Sales. 2006. Retrieved 18 January 2014. 38. "Manufacturing Methods for Samarium Cobalt Magnets". Google Books. Defense Technical Information Center. Retrieved 18 May 2015. 39. Corrosion and oxidation resistance of Smco magnet, corrosion and oxidation resistance. 40. F. Magnussen. On design and analysis of synchronous permanent magnet machines for field weakening operation in hybrid electric vehicles. PhD thesis, Royal Inst. of Tech., Sweden, 2004. 41. F. Libert. Design, optimisation and comparison of permanent magnet motors for a low speed direct driven mixer. Lic. thesis, Royal Inst. of Tech., Sweden, 2004. 42. D. Svechkarenko. On design and analysis of a novel transverse flux generator for direct driven wind application. PhD thesis, Royal Inst. of Tech., Sweden, 2010. 43. L. H. Hansen et al. Conceptual survey of generators and power electronics for wind turbines. Technical report, Riso national lab, Roskilde, Denmark, 44. A. Grauers. Design of direct driven permanent magnet generators for wind turbines.PhD thesis, Chalmers Univ. of Tech., Sweden, 1996. 45. D. Svechkarenko. Thermal modeling and measurements of permanent magnet machines. Master’s thesis, Royal Inst. of Tech., Sweden, 2004. 46. G. Kylander. Thermal modelling of small cage induction motors. PhD thesis, Chalmers Univ. Technol., Gothenburg, Sweden, 1995. 47. M. Degner A. Munoz, F. Liang. Evaluation of interior pm and surface pm synchronous machines with distributed and concentrated windings. In IECON, pages 1189–1193, 2008. 48. G. Kylander. Thermal modelling of small cage induction motors. PhD thesis, Chalmers Univ. Technol., Gothenburg, Sweden, 1995. 49. F. Magnussen. On design and analysis of synchronous permanent magnet machines for field weakening operation in hybrid electric vehicles. PhD thesis, Royal Inst. Of Tech., Sweden, 2004. 50. F. Libert. Design, optimisation and comparison of permanent magnet motors for a low speed direct driven mixer. Lic. thesis, Royal Inst. of Tech., Sweden, 2004. 51. D. Svechkarenko. On design and analysis of a novel transverse flux generator for direct driven wind application. PhD thesis, Royal Inst. of Tech., Sweden, 2010. 52. D. Hanselman. Brushless permanent magnet motor design. US: The Writer’s Collective, 2 edition, 2003. 53. A. Grauers. Design of direct driven permanent magnet generators for wind turbines. PhD thesis, Chalmers Univ. of Tech., Sweden, 1996. 54. L. H. Hansen et al. Conceptual survey of generators and power electronics for wind turbines. Technical report, Riso national lab, Roskilde, Denmark, 55. N. Bainchi et al. Design considerations on fractional slot fault tolerant synchronous motors. In IEMDC, pages 902–909, 2005. 56. M. Degner A. Munoz, F. Liang. Evaluation of interior pm and surface pm synchronous machines with distributed and concentrated windings. In IECON, pages 1189–1193, 2008. 83 57. G. Kylander. Thermal modelling of small cage induction motors. PhD thesis, Chalmers Univ. Technol., Gothenburg, Sweden, 1995. 58. J. Lindström. Development of an experimental permanent magnet motor drive. Lic. thesis, Chalmers Univ. Technol., Gothenburg, Sweden, 1999. 59. D. Svechkarenko. Thermal modeling and measurements of permanent magnet machines. Master’s thesis, Royal Inst. of Tech., Sweden, 2004. 60. R. Bonert C. Mi, G. R. Slemon. Modeling of iron losses of permanent magnet synchronous motors. In IEEE trans. on Inductrial Applications, volume 39, 2003. 61. F. Sahin. Design and development of a high speed axial flux permanent magnet machine. PhD thesis, Eindhoven Univ. of Tech., The Netherlands, 2001. 62. G. McPherson and R. D. Laramore. An Introduction to Electrical Machines and Transformers. Canada: John Wiley and Sons Inc, 2 edition, 1990. 63. L. H. Hansen A. D. Hansen. Market penetration of wind turbine concepts over the years. Technical report, Riso National Lab. Roskilde, Denmark, 2008. 64. N. Smith. Motors as Generators for Micro-Hydro Power. UK: Russel Press Ltd, 2 edition, 1997. 65. Eiben, A. E. et al (1994). "Genetic algorithms with multi-parent recombination". PPSN III: Proceedings of the International Conference on Evolutionary Computation. The Third Conference on Parallel Problem Solving from Nature: 78–87. ISBN 3-540-58484-6. 66. Taherdangkoo, Mohammad; Paziresh, Mahsa; Yazdi, Mehran; Bagheri, Mohammad Hadi (19 November 2012). "An efficient algorithm for function optimization: modified stem cells algorithm". Central European Journal of Engineering 3 (1): 36–50. doi:10.2478/s13531-012-0047-8. 67. Jump up^ Wolpert, D.H., Macready, W.G., 1995. No Free Lunch Theorems for Optimisation. Santa Fe Institute, SFI-TR-05-010, Santa Fe. 68. Jump up^ Goldberg, David E. (1991). "The theory of virtual alphabets". Parallel Problem Solving from Nature, Lecture Notes in Computer Science 496: 13–22. doi:10.1007/BFb0029726. Retrieved 2 July 2013. 69. Jump up^ Janikow, C. Z.; Michalewicz, Z. (1991). "An Experimental Comparison of Binary and Floating Point Representations in Genetic Algorithms" (PDF). Proceedings of the Fourth International Conference on Genetic Algorithms: 31–36. Retrieved 2 July 2013. 70. Jump up^ Patrascu, M.; Stancu, A.F.; Pop, F. (2014). "HELGA: a heterogeneous encoding lifelike genetic algorithm for population evolution modeling and simulation". Soft Computing 18: 2565–2576. 71. Jump up^ Baluja, Shumeet; Caruana, Rich (1995). Removing the genetics from the standard genetic algorithm (PDF). ICML. 72. Jump up^ Srinivas. M and Patnaik. L, "Adaptive probabilities of crossover and mutation in genetic algorithms," IEEE Transactions on System, Man and Cybernetics, vol.24, no.4, pp.656–667, 1994. en_US
dc.identifier.uri http://hdl.handle.net/123456789/1422
dc.description Supervised by Mr. Ashik Ahmed, Department of Electrical and Electronic Engineering Islamic University of Technology (IUT), Organisation of Islamic Cooperation (OIC), Dhaka, Bangladesh en_US
dc.description.abstract Because of the scarcity of available energy resources, it is a matter of time that we have to depend on renewable energy in the near future. And in that case wind energy has to play an important role. But one problem is that wind availability is sporadic and unpredictable and wind speed varies time to time. In response to that problem effective designing of the controller parameters of a direct drive permanent magnet synchronous generator (PMSG) connected to power grid is proposed in this thesis. In our proposed model the direct drive PMSG is connected to the grid network through a back to back full scale converter, coupling transformer and a Low Pass Filter (LPF). Eigen value analysis is used to analyze the small signal stability of the system and the parameters of the system can be well chosen by means of Eigen values sensitive analysis. The relation between modes and state variables can be discovered. Then the influences of the controller’s parameters on the traces of Eigen values are analyzed. According to the traces of Eigen values controller’s parameters and verification of the system stability under some parameter variations were achieved. The simulation results show that with optimized controller parameters the system stability is improved after suffering disturbance of a wind velocity variation and the system dynamic response is consistent with the result of a small signal analysis. en_US
dc.language.iso en en_US
dc.publisher Department of Electrical and Electronic Engineering, Islamic University of Technology (IUT), Board Bazar, Gazipur-1704, Bangladesh en_US
dc.subject Permanent Magnet Synchronous generator, Eigen Value, linearization, Initialization, Nonlinear modeling, Small signal modeling, Stability en_US
dc.title Dynamic Modeling and Control of Permanent Magnet Synchronous Generator (PMSG) in Wind Energy Conversion System en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics