Optimization of Micro EDM Process Using Multi Objective Grasshopper Optimization Algorithm (MOGOA)

Show simple item record

dc.contributor.author Sakib, Mohmmad Shadman
dc.date.accessioned 2022-04-29T05:33:59Z
dc.date.available 2022-04-29T05:33:59Z
dc.date.issued 2021-03-30
dc.identifier.citation [1] F. T. Weng, R. F. Shyu, and C. S. Hsu, “Fabrication of micro-electrodes by multi-EDM grinding process,” 2003, doi: 10.1016/S0924-0136(03)00748-9. [2] N. Mohri, Y. Fukuzawa, T. Tani, N. Saito, and K. Furutani, “Assisting Electrode Method for Machining Insulating Ceramics,” CIRP Ann. - Manuf. Technol., 1996, doi: 10.1016/S0007-8506(07)63047-9. [3] N. Mohri, Y. Fukusima, Y. Fukuzawa, T. Tani, and N. Saito, “Layer generation process on work-piece in electrical discharge machining,” CIRP Ann. - Manuf. Technol., 2003, doi: 10.1016/S0007-8506(07)60554-X. [4] M. A. Habib, S. W. Gan, and M. Rahman, “Fabrication of complex shape electrodes by localized electrochemical deposition,” J. Mater. Process. Technol., 2009, doi: 10.1016/j.jmatprotec.2008.10.041. [5] M. A. Habib, S. W. Gan, H. S. Kim, and M. Rahman, “Fabrication of EDM electrodes by localized electrochemical deposition,” Int. J. Precis. Eng. Manuf., 2008. [6] M. Y. Cheng and D. Prayogo, “Symbiotic Organisms Search: A new metaheuristic optimization algorithm,” Comput. Struct., 2014, doi: 10.1016/j.compstruc.2014.03.007. [7] S. Arora, “Approximation schemes for NP-hard geometric optimization problems: a survey,” Math. Program., 2003, doi: 10.1007/s10107-003-0438-y. [8] S. Saremi, S. Mirjalili, and A. Lewis, “Grasshopper Optimisation Algorithm: Theory and application,” Adv. Eng. Softw., 2017, doi: 10.1016/j.advengsoft.2017.01.004. [9] M. A. Habib and M. Rahman, “Performance of electrodes fabricated by localized electrochemical deposition (LECD) in micro-EDM operation on different workpiece materials,” J. Manuf. Process., 2016, doi: 10.1016/j.jmapro.2016.08.003. [10] M. Y. Ali, A. N. Mustafizul Karim, E. Y. T. Adesta, A. F. Ismail, A. A. Abdullah, and M. N. Idris, “Comparative study of conventional and micro WEDM based on machining of meso/micro sized spur gear,” Int. J. Precis. Eng. Manuf., 2010, doi: 10.1007/s12541-010- Optimization of Micro EDM Process Using Multi Objective Optimization Algorithm (MOGOA) 71 0092-2. [11] S. Di, X. Chu, D. Wei, Z. Wang, G. Chi, and Y. Liu, “Analysis of kerf width in microWEDM,” Int. J. Mach. Tools Manuf., 2009, doi: 10.1016/j.ijmachtools.2009.04.006. [12] K. T. Hoang and S. H. Yang, “A study on the effect of different vibration-assisted methods in micro-WEDM,” J. Mater. Process. Technol., 2013, doi: 10.1016/j.jmatprotec.2013.03.025. [13] S. Chakraborty, V. Dey, and S. K. Ghosh, “A review on the use of dielectric fluids and their effects in electrical discharge machining characteristics,” Precision Engineering. 2015, doi: 10.1016/j.precisioneng.2014.11.003. [14] K. T. Hoang and S. H. Yang, “A new approach for Micro-WEDM control based on RealTime estimation of material removal rate,” Int. J. Precis. Eng. Manuf., 2015, doi: 10.1007/s12541-015-0032-2. [15] Z. Chen, Y. Huang, H. Huang, Z. Zhang, and G. Zhang, “Three-dimensional characteristics analysis of the wire-tool vibration considering spatial temperature field and electromagnetic field in WEDM,” Int. J. Mach. Tools Manuf., 2015, doi: 10.1016/j.ijmachtools.2015.03.003. [16] A. Debroy and S. Chakraborty, “Non-conventional optimization techniques in optimizing non-traditional machining processes: A review,” Manag. Sci. Lett., 2013, doi: 10.5267/j.msl.2012.10.038. [17] B. Azhiri, R. Teimouri, M. Ghasemi Baboly, and Z. Leseman, “Application of Taguchi, ANFIS and grey relational analysis for studying, modeling and optimization of wire EDM process while using gaseous media,” Int. J. Adv. Manuf. Technol., 2014, doi: 10.1007/s00170-013-5467-y. [18] A. Schubert, H. Zeidler, N. Wolf, and M. Hackert, “Micro electro discharge machining of electrically nonconductive ceramics,” 2011, doi: 10.1063/1.3589696. [19] S. Dhanik and S. S. Joshi, “Modeling of a single resistance capacitance pulse discharge in micro-electro discharge machining,” J. Manuf. Sci. Eng. Trans. ASME, 2005, doi: Optimization of Micro EDM Process Using Multi Objective Optimization Algorithm (MOGOA) 72 10.1115/1.2034512. [20] S. Das and S. S. Joshi, “Modeling of spark erosion rate in microwire-EDM,” Int. J. Adv. Manuf. Technol., 2010, doi: 10.1007/s00170-009-2315-1. [21] B. Asfana, M. Y. Ali, A. R. Mohamed, and W. N. P. Hung, “Material Removal Rate of Zirconia in Electro Discharge Micromachining ,” Adv. Mater. Res., 2015, doi: 10.4028/www.scientific.net/amr.1115.20. [22] T. Hösel, P. Cvancara, T. Ganz, C. Müller, and H. Reinecke, “Characterisation of high aspect ratio non-conductive ceramic microstructures made by spark erosion,” Microsyst. Technol., 2011, doi: 10.1007/s00542-011-1284-0. [23] I. Puertas and C. J. Luis, “A study on the machining parameters optimisation of electrical discharge machining,” 2003, doi: 10.1016/S0924-0136(03)00392-3. [24] A. B. Puri and B. Bhattacharyya, “Modeling and analysis of white layer depth in a wire-cut EDM process through response surface methodology,” Int. J. Adv. Manuf. Technol., 2005, doi: 10.1007/s00170-003-2045-8. [25] M. S. Hewidy, T. A. El-Taweel, and M. F. El-Safty, “Modelling the machining parameters of wire electrical discharge machining of Inconel 601 using RSM,” J. Mater. Process. Technol., 2005, doi: 10.1016/j.jmatprotec.2005.04.078. [26] A. A. Iqbal and A. A. Khan, “Modelling and analysis of MRR, EWR and surface roughness in EDM milling through response surface methodology,” J. Eng. Appl. Sci., 2010, doi: 10.3923/jeasci.2010.154.162. [27] M. S. Sohani, V. N. Gaitonde, B. Siddeswarappa, and A. S. Deshpande, “Investigations into the effect of tool shapes with size factor consideration in sink electrical discharge machining (EDM) process,” Int. J. Adv. Manuf. Technol., 2009, doi: 10.1007/s00170-009-2044-5. [28] A. B. Puri and B. Bhattacharyya, “An analysis and optimisation of the geometrical inaccuracy due to wire lag phenomenon in WEDM,” Int. J. Mach. Tools Manuf., 2003, doi: 10.1016/S0890-6955(02)00158-X. Optimization of Micro EDM Process Using Multi Objective Optimization Algorithm (MOGOA) 73 [29] M. A. El-Dardery, “Economic study of electrochemical machining,” Int. J. Mach. Tool Des. Res., 1982, doi: 10.1016/0020-7357(82)90023-3. [30] D. Karaboga, “An idea based on Honey Bee Swarm for Numerical Optimization,” Tech. Rep. TR06, Erciyes Univ., 2005. [31] A. H. Gandomi and A. H. Alavi, “Krill herd: A new bio-inspired optimization algorithm,” Commun. Nonlinear Sci. Numer. Simul., 2012, doi: 10.1016/j.cnsns.2012.05.010. [32] S. Mirjalili, “The ant lion optimizer,” Adv. Eng. Softw., 2015, doi: 10.1016/j.advengsoft.2015.01.010. [33] J. Kennedy and R. Eberhart, “Particle swarm optimization,” 1995, doi: 10.4018/ijmfmp.2015010104. [34] I. Boussaïd, J. Lepagnot, and P. Siarry, “A survey on optimization metaheuristics,” 2013, doi: 10.1016/j.ins.2013.02 en_US
dc.identifier.uri http://hdl.handle.net/123456789/1437
dc.description Supervised by Dr. Mohammad Ahsan Habib, Professor, Department of Mechanical & Production Engineering (MPE), Islamic University of Technology(IUT), Board Bazar, Gazipur-1704, Bangladesh en_US
dc.description.abstract The complex cross sectional micro-operation entails precise and stable micro machining processes. Localized electrochemical deposition in micro EDM operation is an inexpensive meticulous machining approach which can maneuver a variation of structures. The discharge energy of RC type pulse generator depends on capacitance and pulse voltage which have direct impact on Material Removal Rate (MRR), Relative Wear Ratio (RWR), Average Spark Gap (ASG) and Average Taper Angle (ATA). In this book, the optimal performance of MRR, RWR, ASG and ATA are optimized using Multi Objective Grasshopper Optimization Algorithm (MOGOA) on steel, copper, brass and aluminium are investigated. The desired condition of micro EDM operation is higher MRR and lower RWR, ASG and ATA in order to minimize the discharge energy of the machining process. The objective of the book is to find the optimal set of parameters that satisfies the multi conflicting optimizing parameters. The effect of the workpiece materials at different operating conditions are investigated to determine the effect of the optimizing parameters on the tool efficiency, workpiece efficiency and dimensional accuracy are studied. The optimization algorithm is evaluated with diverse optimization algorithms. en_US
dc.language.iso en en_US
dc.publisher Department of Mechanical and Production Engineering, Islamic University of Technology, Gazipur, Bangladesh en_US
dc.subject micro EDM, MOGOA, MRR, RWR, ASG, ATA en_US
dc.title Optimization of Micro EDM Process Using Multi Objective Grasshopper Optimization Algorithm (MOGOA) en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics