dc.identifier.citation |
[1] J. Jeon, J.H. Lee, J. Seo, S.G. Jeong, S. Kim, Application of PCM thermal energy storage system to reduce building energy consumption, J. Therm. Anal. Calorim. 111 (2013) 279-288. [2] C. Beckermann, R. Viskanta, Effect of solid subcooling on natural convection melting of a pure metal, J. Heat. Transf. 111 (1989) 416-424. [3] Y. Wang, A. Amiri, K. Vafai, An experimental investigation of the melting process in a rectangular enclosure, Int. J. Heat Mass Transf. 42 (1999) 3659-3672 [4] Z.X. Gong, S. Devahastin, A.S. Mujumdar, Enhanced heat transfer in free convection-dominated melting in a rectangular cavity with an isothermal vertical wall, Appl. Therm. Eng. 19 (1999) 1237-1251. [5] B. Ghasemi, M. Molki, Melting of unfixed solids in square cavities, Int. J. Heat. Fluid. Fl. 20 (1999) 446-452. [6] B. Zivkovic, I. Fujii, An analysis of isothermal phase change of phase change materials within rectangular and cylindrical containers, Sol. Energy 70 (2001)51-61. [7] L.M. Jiji, S. Gaye, Analysis of solidification and melting of PCM with energy generation, Appl. Therm. Eng. 26 (2006) 568-575. [8] Y. Du, Y. Yuan, D. Jia, B. Cheng, J. Mao, Experimental investigation on melting characteristics of ethanolamine–water binary mixture used as PCM, Int. Commun. Heat Mass Transf. 34 (2007) 1056-1063. [9] S. Wang, A. Faghri, T.L. Bergman, A comprehensive numerical model for melting with natural convection, Int. J. Heat Mass Transf. 53 (2010) 1986-2000. [10] H. El Qarnia, A. Draoui, E.K. Lakhal, Computation of melting with natural convection inside a rectangular enclosure heated by discrete protruding heat sources, Appl. Math. Model. 37 (2013) 3968-3981. [11] L. Zalewski, A. Joulin, S. Lassue, Y. Dutil, D. Rousse, Experimental study of small-scale solar wall integrating phase change material, Sol. Energy 86 (2012) 208-219. [12] A. Bontemps, M. Ahmad, K. Johannes, H. Sallee, Experimental and modeling study of twin cells with latent heat storage walls, Energy Build. 43 (2011) 2456-2461 [13] B. Kamkari, H. Shokouhmand, F. Bruno, Experimental investigation of the effect of inclination angle on convection-driven melting of phase change material in a rectangular enclosure, Int. J. Heat Mass Transf. 72 (2014) 186-200. 23 [14] B. Kamkari, H. Shokouhmand, Experimental investigation of phase change material melting in rectangular enclosures with horizontal partial fins, Int. J. Heat Mass Transf. 78 (2014) 839-851 [15] H. Shokouhmand, B. Kamkari, Experimental investigation on melting heat transfer characteristics of lauric acid in a rectangular thermal storage unit, Exp. Therm. Fluid Sci. 50 (2013) 201-212. [16] A.A. Bhuiyan, S.F. Barna, M.H. Banna, A.K.M.S. Islam, "Effect of aspect ratio on entropy generation in a microstructure filled vented cavity", 4th BSME-ASME International Conference on Thermal Engineering,27-29 December,2008, Vol. II, pp 634-640 [17] S.F. Barna, A.A. Bhuiyan, M.H. Banna, A.K.M.S. Islam, "Effect of inlet to cavity width ratio on mixed convection in a microstructure filled vented cavity", 4th BSME-ASME International Conference on Thermal Engineering, 27-29 December, 2008, Vol. I, pp48-55. [18] A.A. Bhuiyan, S.F. Barna, M.H. Banna, A.K.M.S. Islam , "Numerical analysis on mixed convection through an adiabatic enclosure filled with fluid saturated porous medium", 4th BSME-ASME International Conference on Thermal Engineering,27-29 December, 2008, Vol. II, pp641-647 [19] ASME International Mechanical Engineering Congress and Exposure (IMECE): Heat transfer, Fluid flows, and Thermal Systems, Parties A, B. A.A. Bhuiyan, M.R. Amin, B. S.F. Barna, M.H, Banna, A.K.M.S. Islam, "Convection mixed and entropy-generation features inside porous cavity with a viscous disintegration effect" [20] CFD modeling, Front. Mass heat transfer. (2015), 1-11. A.A. Bhuiyan, M.R. Amin, J. Naser, A.K.M.S. Islam, Effects of geometric parameters for the turbulent flow of wavy finned heat exchanger: [21] Numeric prediction in the finned-tube heat exchangers of laminar fluid flow characteristics and the heat transfer, A.A. Bhuiyan, A.K.M.S. Islam, Amin, M.R. Amin, Innov.. [22] A.A. Bhuiyan, M.R. Amin, A.K.M.S. Islam, Three-dimensional analysis of performance of transitional transitional regime single tube heat exchanger systems, Appl. Therm. Eng. 50(2013) 445-454. [23] A.A. Bhuiyan, M.R. Amin, R. Karim, A.K.M. Islam, Modeling of heat exchanger plates and tube: effects of turbulent flow mode performance settings, Int. J. Auto. Mech. 9 (2014) 1768-1781. 24 [24] Number of 3D thermal and hydraulic characteristics of the heat exchanger wavy fin and tube, front. Heater-mass Transf. 3 (2012) 1-9. A.A. Bhuiyan, A.K.M. Islam, M.R. Amin. [25] E.M. Languri, C.O. Aigbotsua, Alvarado, Latent thermal energy storage system, Appl. Therm, en. 50(2013) 1008-1014, Phase-change material. [26] A.A. Al-Abidi, S. Mat, K. Sopian, M.Y. Sulaiman, A.T. Mohammad, Enhanced internal and external thermal energy storage thermal energy in the triplex heat exchanger system, Appl. Therm (2013) Eng. 53-156. Eng. 147-156. [27] M.K. Reghod, J. Banerjee, Longitudinal Thermic Heat Storage Unit for shell and tube performance improvement, Appl. Therm Eng. 75 (2015) 1084-1092. [28] He, Numerical Study of the heat charging and discharge of the phase-change heat storage unit shell and tube characteristics, Appl. Therm. Eng. 58(2013) 542-553. W. Wang, K. Zhang, L.-B. Wang, Y.-L. [29] S.Z. Shoja, B.S. Shoe, M.M. Shoe, Melting improvement with a metal mesh of phase change, Appl. Therm. Eng. 79 (2015) 163-173. Eng. [30] Henderson, Appl. Therm. Eng. 87(2015)698-707 Numeric heat transfer mechanism research in vertical heat storage system in a shell and latent tube. Henderson, Appl. Therm. Eng.. [31] "Phase of change materials for thermal energy storage." Pielichowska, Kinga and Krzysztof Pielichowsky. Materials science development 65 (2014): 67-123. [32] Wahid, Mazlan Abdul, et al. "An overview of phase change materials for construction architecture thermal management in hot and dry climate regions." Applied Thermal Engineering 112 (2017): 1240-1259. [33] Gasia J, Miró L, Solé A, Martorell I, Kelly M, Bauer B, Van Bael J, Diriken J, Griffiths P, Redpath D, Cabeza LF. MERITS Project: A comparative study of four different PCM energy storage systems for domestic hot water (DHW) applications. Eurotherm 2014, Spain [34] Neumann H, Niedermaier S, Solé A, Schossig P. Thermal stability of Mannitol as phase change material (PCM). Eurotherm 2014, Spain. [35] S. Bellan, J. Gonzalez-Aguilar, M. Romero, M.M. Rahman, D.Y. Goswami, E.K. Stefanakos, D. Couling, Numerical analysis of charging and discharging performance of a thermal energy storage sy |
en_US |