dc.identifier.citation |
[1] “Perovskites Solar Cell Structure, Efficiency & More | Ossila.” [Online]. Available: https://www.ossila.com/pages/perovskites-and-perovskite-solarcells-an-introduction#ref6. [Accessed: 07-Mar-2021]. [2] M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (version 52),” Prog. Photovoltaics Res. Appl., vol. 26, no. 7, pp. 427–436, 2018. [3] “Perovskite Solar | Perovskite-Info.” [Online]. Available: https://www.perovskite-info.com/perovskite-solar. [Accessed: 07-Mar-2021]. [4] “Perovskite solar cell: Hero, villain or just plain fantasy?” [Online]. Available: https://www.solarpowerworldonline.com/2020/02/perovskite-solar-cells-herovillain-or-just-plain-fantasy/. [Accessed: 07-Mar-2021]. [5] “Oxford PV closes £65 million funding round | Perovskite-Info.” [Online]. Available: https://www.perovskite-info.com/oxford-pv-closes-65-millionfunding-round. [Accessed: 07-Mar-2021]. [6] “Dyesol declares perovskite stability breakthrough | Perovskite-Info.” [Online]. Available: https://www.perovskite-info.com/dyesol-declares-perovskitestability-breakthrough. [Accessed: 07-Mar-2021]. [7] “solar cell | Definition, Working Principle, & Development | Britannica.” [Online]. Available: https://www.britannica.com/technology/solarcell#ref289540. [Accessed: 11-Mar-2021]. [8] R. Amantea, “An introduction to modeling and simulation,” R.C.A. Rev., vol. 46, no. 3, pp. 281–288, 1985. [9] A. De Vos, “Detailed balance limit of the efficiency of tandem solar cells,” J. Phys. D. Appl. Phys., vol. 13, no. 5, pp. 839–846, May 1980. [10] J. Xu et al., “Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems,” Science (80-. )., vol. 367, no. 6482, pp. 1097–1104, 2020. 36 [11] Y. Hou et al., “Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon,” Science (80-. )., vol. 367, no. 6482, pp. 1135– 1140, 2020. [12] B. Chen et al., “Blade-Coated Perovskites on Textured Silicon for 26%- Efficient Monolithic Perovskite/Silicon Tandem Solar Cells,” Joule, vol. 4, no. 4, pp. 850–864, 2020. [13] M. Jošt, L. Kegelmann, L. Korte, and S. Albrecht, “Monolithic Perovskite Tandem Solar Cells: A Review of the Present Status and Advanced Characterization Methods Toward 30% Efficiency,” Adv. Energy Mater., vol. 10, no. 26, 2020. [14] J. P. Mailoa et al., “A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction,” Appl. Phys. Lett., vol. 106, no. 12, 2015. [15] J. Werner et al., “Zinc tin oxide as high-temperature stable recombination layer for mesoscopic perovskite/silicon monolithic tandem solar cells,” Appl. Phys. Lett., vol. 109, no. 23, pp. 2–6, 2016. [16] Y. Wu et al., “Monolithic perovskite/silicon-homojunction tandem solar cell with over 22% efficiency,” Energy Environ. Sci., vol. 10, no. 11, pp. 2472– 2479, 2017. [17] J. Zheng et al., “Large area efficient interface layer free monolithic perovskite/homo-junction-silicon tandem solar cell with over 20% efficiency,” Energy Environ. Sci., vol. 11, no. 9, pp. 2432–2443, 2018. [18] J. Zheng et al., “21.8% Efficient Monolithic Perovskite/Homo-JunctionSilicon Tandem Solar Cell on 16 cm2,” ACS Energy Lett., vol. 3, no. 9, pp. 2299–2300, 2018. [19] D. Rached and R. Mostefaoui, “Influence of the front contact barrier height on the Indium Tin Oxide/hydrogenated p-doped amorphous silicon heterojunction solar cells,” Thin Solid Films, vol. 516, no. 15, pp. 5087–5092, 2008. [20] M. Stolterfoht, V. M. Le Corre, M. Feuerstein, P. Caprioglio, L. J. A. Koster, and D. Neher, “Voltage-Dependent Photoluminescence and How It Correlates 37 with the Fill Factor and Open-Circuit Voltage in Perovskite Solar Cells,” ACS Energy Lett., vol. 4, no. 12, pp. 2887–2892, 2019. [21] E. L. Unger et al., “Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells,” Energy Environ. Sci., vol. 7, no. 11, pp. 3690–3698, 2014. [22] R. Cheacharoen, N. Rolston, D. Harwood, K. A. Bush, R. H. Dauskardt, and M. D. McGehee, “Design and understanding of encapsulated perovskite solar cells to withstand temperature cycling,” Energy Environ. Sci., vol. 11, no. 1, pp. 144–150, 2018. [23] K. Ellmer, R. Wendt, and R. Cebulla, “ZnO/ZnO:Al window and contact layer for thin film solar cells: high rate deposition by simultaneous rf and dc magnetron sputtering,” Conf. Rec. IEEE Photovolt. Spec. Conf., pp. 851–854, 1996. [24] M. F. Ali and M. F. Hossain, “Influence of Front and Back Contacts on Photovoltaic Performances of p-n Homojunction Si Solar Cell: Considering an Electron-Blocking Layer,” Int. J. Photoenergy, vol. 2017, 2017. [25] S. Ahmed et al., “Simulation studies of Sn-based perovskites with Cu backcontact for non-toxic and non-corrosive devices,” J. Mater. Res., vol. 34, no. 16, pp. 2789–2795, 2019. [26] Afrasiab et al., “Optimization of efficient monolithic perovskite/silicon tandem solar cell,” Optik (Stuttg)., vol. 208, no. January, p. 164573, 2020. [27] M. Aitezaz Hussain, S. Khan, A. Rahim, A. Jan, and M. Rashid, “Optimization of Power Conversion Efficiency for Perovskite Solar Cell using GPVDM,” Int. J. Eng. Work., vol. 07, no. 02, pp. 109–115, 2020. [28] W. Farooq et al., “Thin-Film Tandem Organic Solar Cells with Improved Efficiency,” IEEE Access, vol. 8, pp. 74093–74100, 2020. [29] M. Sittirak, J. Ponrat, K. Thubthong, P. Kumnorkaew, J. Lek-Uthai, and Y. Infahsaeng, “The effects of layer thickness and charge mobility on performance of FAI:MABr:PbI2:PbBr2 perovskite solar cells: GPVDM simulation 38 approach,” J. Phys. Conf. Ser., vol. 1380, no. 1, 2019. [30] A. Hima, N. Lakhdar, B. Benhaoua, A. Saadoune, I. Kemerchou, and F. Rogti, “An optimized perovskite solar cell designs for high conversion efficiency,” Superlattices Microstruct., vol. 129, no. March, pp. 240–246, 2019. [31] R. Yasodharan, A. P. Senthilkumar, J. Ajayan, and P. Mohankumar, “Effects of layer thickness on Power Conversion Efficiency in Perovskite solar cell: A numerical simulation approach,” 2019 5th Int. Conf. Adv. Comput. Commun. Syst. ICACCS 2019, pp. 1132–1135, 2019. [32] “Spiro-OMeTAD (Spiro-MeOTAD) | CAS 207739-72-8 | Ossila.” [Online]. Available: https://www.ossila.com/products/spiroometad?variant=23115455681. [Accessed: 12-Mar-2021]. [33] “Fill Factor | PVEducation.” [Online]. Available: https://www.pveducation.org/pvcdrom/solar-cell-operation/fill-factor. [Accessed: 13-Mar-2021]. |
en_US |