dc.identifier.citation |
1. “BP Statistical Review of World Energy 2016.” [Online]. Available: http://large.stanford.edu/courses/2016/ph240/stanchi2/docs/bp-2016.pdf 2. Iea, “World Energy Outlook 2015 – Analysis,” IEA. [Online]. Available: https://www.iea.org/reports/world-energy-outlook-2015 3. “bp Statistical Review of World Energy 2020.” [Online]. Available: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energyeconomics/statistical-review/bp-stats-review-2020-full-report.pdf. 4. “International Technology Roadmap for Photovoltaic (ITRPV): 2015 Results Including Maturity Report” [Online].Available: http://www.itrpv.net/Reports/Downloads 5. A. Blakers, N. Zin, K. R. Mcintosh, and K. Fong, “High Efficiency Silicon Solar Cells,” Energy Procedia, vol. 33, pp. 1–10, 2013. 6. K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-film solar cells: an overview,” Progress in Photovoltaics: Research and Applications, vol. 12, no. 23, pp. 69–92, 2004. 7. D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power,” Journal of Applied Physics, vol. 25, no. 5, pp. 676–677, 1954. 8. K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Applied Physics Letters, vol. 93, no. 12, p. 121904, 2008. 9. R. J. Mukti, M. R. Hossain, A. Islam, S. Mekhilef, and B. Horan, “Increased Absorption with Al Nanoparticle at Front Surface of Thin Film Silicon Solar Cell,” Energies, vol. 12, no. 13, p. 2602, 2019. 10. P. Spinelli and A. Polman, “Prospects of near-field plasmonic absorption enhancement in semiconductor materials using embedded Ag nanoparticles,” Optics Express, vol. 20, no. S5, 2012. 11. C. Noguez, “Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment,” The Journal of Physical Chemistry C, vol. 111, no. 10, pp. 3806– 3819, 2007. 12. R. B. Wehrspohn and J. Üpping, “3D photonic crystals for photon management in solar cells,” Journal of Optics, vol. 14, no. 2, p. 024003, 2012. 49 13. R. Biswas, J. Bhattacharya, B. Lewis, N. Chakravarty, and V. Dalal, “Enhanced nanocrystalline silicon solar cell with a photonic crystal back-reflector,” Solar Energy Materials and Solar Cells, vol. 94, no. 12, pp. 2337–2342, 2010. 14. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thinfilm crystalline silicon solar cell efficiencies with photonic crystals,” Optics Express, vol. 15, no. 25, p. 16986, 2007. 15. E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Letters, vol. 10, no. 3, pp. 1082–1087, 2010. 16. S. Jeong, M. D. Mcgehee, and Y. Cui, “All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency,” Nature Communications, vol. 4, no. 1, 2013. 17. Y.-R. Lin, H.-P. Wang, C.-A. Lin, and J.-H. He, “Surface profile-controlled close-packed Si nanorod arrays for self-cleaning antireflection coatings,” Journal of Applied Physics, vol. 106, no. 11, p. 114310, 2009. 18. S. E. Han and G. Chen, “Optical Absorption Enhancement in Silicon Nanohole Arrays for Solar Photovoltaics,” Nano Letters, vol. 10, no. 3, pp. 1012–1015, 2010. 19. A. Mavrokefalos, S. E. Han, S. Yerci, M. S. Branham, and G. Chen, “Efficient Light Trapping in Inverted Nanopyramid Thin Crystalline Silicon Membranes for Solar Cell Applications,” Nano Letters, vol. 12, no. 6, pp. 2792–2796, 2012. 20. Z. Fan, H. Razavi, J.-W. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nature Materials, vol. 8, no. 8, pp. 648–653, 2009. 21. J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light Absorption Enhancement in Thin-Film Solar Cells Using Whispering Gallery Modes in Dielectric Nanospheres,” Advanced Materials, vol. 23, no. 10, pp. 1272–1276, 2011. 22. O. Isabella, F. Moll, J. Krč, and M. Zeman, “Modulated surface textures using zinc-oxide films for solar cells applications,” physica status solidi (a), vol. 207, no. 3, pp. 642–646, 2010. 23. “Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties,” Journal of Applied Physics, vol. 108, no. 4, p. 044505, 2010. 50 24. L. Wen, F. Sun, and Q. Chen, “Cascading metallic gratings for broadband absorption enhancement in ultrathin plasmonic solar cells,” Applied Physics Letters, vol. 104, no. 15, p. 151106, 2014. 25. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Applied Physics Letters, vol. 89, no. 11, p. 111111, 2006. 26. C. Battaglia, K. Söderström, J. Escarré, F.-J. Haug, D. Dominé, P. Cuony, M. Boccard, G. Bugnon, C. Denizot, M. Despeisse, A. Feltrin, and C. Ballif, “Efficient light management scheme for thin film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting,” Applied Physics Letters, vol. 96, no. 21, p. 213504, 2010. 27. S. Zaidi, D. Ruby, and J. Gee, “Characterization of random reactive ion etched-textured silicon solar cells,” IEEE Transactions on Electron Devices, vol. 48, no. 6, pp. 1200– 1206, 2001. 28. S. Q. Hussain, A. H. T. Le, K. Mallem, H. Park, M. Ju, S. Lee, J. Cho, Y. Lee, J. Park, E.-C. Cho, Y.-J. Lee, Y. Kim, and J. Yi, “Efficient light trapping for maskless large area randomly textured glass structures with various haze ratios in silicon thin film solar cells,” Solar Energy, vol. 173, pp. 1173–1180, 2018. 29. S. A. Maier, Plasmonics: fundamentals and applications. New York, NY: Springer, 2007. 30. M. A. Green and S. Pillai, “Harnessing plasmonics for solar cells,” Nature Photonics, vol. 6, no. 3, pp. 130–132, 2012. 31. Y. A. Akimov and W. S. Koh, “Design of Plasmonic Nanoparticles for Efficient Subwavelength Light Trapping in Thin-Film Solar Cells,” Plasmonics, vol. 6, no. 1, pp. 155–161, 2010. 32. H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic Light Trapping in Thin-film Silicon Solar Cells with Improved Self-Assembled Silver Nanoparticles,” Nano Letters, vol. 12, no. 8, pp. 4070–4076, 2012. 33. C. F. Bohren and D. R. Huffman, “Absorption and Scattering of Light by Small Particles,” John Wiley & Sons, 1998. 51 34. J. Mertz, “Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: a unified description,” Journal of the Optical Society of America B, vol. 17, no. 11, p. 1906, 2000. 35. A. P. Amalathas and M. Alkaisi, “Nanostructures for Light Trapping in Thin Film Solar Cells,” Micromachines, vol. 10, no. 9, p. 619, 2019. 36. H. R. Stuart and D. G. Hall, “Absorption Enhancement in Silicon Waveguides Using Metal Island Films,” Integrated Photonics Research, 1996. 37. H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Applied Physics Letters, vol. 73, no. 26, pp. 3815–3817, 1998. 38. K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Applied Physics Letters, vol. 93, no. 12, p. 121904, 2008. 39. G. Singh and S. S. Verma, “Enhanced efficiency of thin film GaAs solar cells with plasmonic metal nanoparticles,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 40, no. 2, pp. 155–162, 2017. 40. H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” Journal of Applied Physics, vol. 106, no. 7, p. 073109, 2009. 41. P. Spinelli and A. Polman, “Prospects of near-field plasmonic absorption enhancement in semiconductor materials using embedded Ag nanoparticles,” Optics Express, vol. 20, no. S5, 2012. 42. C. Noguez, “Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment,” The Journal of Physical Chemistry C, vol. 111, no. 10, pp. 3806– 3819, 2007. 43. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” Journal of Applied Physics, vol. 96, no. 12, pp. 7519–7526, 2004. 44. R. B. Konda, R. Mundle, H. Mustafa, O. Bamiduro, A. K. Pradhan, U. N. Roy, Y. Cui, and A. Burger, “Surface plasmon excitation via Au nanoparticles in n-CdSe∕p-Si heterojunction diodes,” Applied Physics Letters, vol. 91, no. 19, p. 191111, 2007. 45. G. Singh and S. Verma, “Plasmon enhanced light trapping in thin film GaAs solar cells by Al nanoparticle array,” Physics Letters A, vol. 383, no. 13, pp. 1526–1530, 2019. 52 46. M.Vijayalakshmi, R. Divya. R.C. Thiagarajan, “Plasmonic Scattering Structures for Improved Performance of Thin Film Solar Cells.” 47. Y. Jin, J. Feng, X.-L. Zhang, M. Xu, Y.-G. Bi, Q.-D. Chen, H.-Y. Wang, and H.-B. Sun, “Surface-plasmon enhanced absorption in organic solar cells by employing a periodically corrugated metallic electrode,” Applied Physics Letters, vol. 101, no. 16, p. 163303, 2012. 48. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Applied Physics Letters, vol. 95, no. 18, p. 183503, 2009. 49. S. Lee, S. In, D. R. Mason, and N. Park, “Incorporation of nanovoids into metallic gratings for broadband plasmonic organic solar cells,” Optics Express, vol. 21, no. 4, p. 4055, 2013. 50. W. Liu, X. Wang, Y. Li, Z. Geng, F. Yang, and J. Li, “Surface plasmon enhanced GaAs thin film solar cells,” Solar Energy Materials and Solar Cells, vol. 95, no. 2, pp. 693– 698, 2011. 51. E. D. Palik, Handbook of optical constants of solids. Orlando: Academic Press, 1985. 52. “ASTM G173 - 03(2020),” ASTM International - Standards Worldwide. [Online]. Available: http://www.astm.org/Standards/G173.htm. |
en_US |