dc.identifier.citation |
1. J. Huang, B. Chen, B. Yao and W. He, "ECG Arrhythmia Classification Using STFTBased Spectrogram and Convolutional Neural Network," in IEEE Access, vol. 7, pp. 92871-92880, 2019, doi: 10.1109/ACCESS.2019.2928017. 2. F. Liu, X. Zhou, J. Cao, Z. Wang, H. Wang and Y. Zhang, "A LSTM and CNN Based Assemble Neural Network Framework for Arrhythmias Classification," ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, United Kingdom, 2019, pp. 1303-1307, doi: 10.1109/ICASSP.2019.8682299 3. Wang, Pu & Hou, Borui & Shao, Siyu & Yan, Ruqiang. (2019). ECG Arrhythmias Detection Using Auxiliary Classifier Generative Adversarial Network and Residual Network. IEEE Access. PP. 1-1. 10.1109/ACCESS.2019.2930882.) 4. Abdullah, A. (2014). ECG in Medical Practice (4th ed.). Jaypee Brothers Medical Pub. 5. ECG & Echo Waves. (2021, February 22). ECG interpretation: Characteristics of the normal ECG (P-wave, QRS complex, ST segment, T-wave) –. ECG & ECHO. https://ecgwaves.com/topic/ecg-normal-p-wave-qrs-complex-st-segment-t-wave-jpoint/ 6. Furst, J. (2017, February 13). Recording a 12 lead ECG/EKG. First Aid for Free. https://www.firstaidforfree.com/recording-a-12-lead-ecgekg/ 7. Electrocardiography. (n.d.). MSD Manual Professional Edition. https://www.msdmanuals.com/professional/cardiovascular-disorders/cardiovasculartests-and-procedures/electrocardiography#v931549 8. X. Zhang et al., "Classification of Arrhythmia Based on Extreme Learning Machine," 2018 10th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), Hangzhou, China, 2018, pp. 123-126, doi: 10.1109/IHMSC.2018.10135. 9. Kachuee, Mohammad & Fazeli, Shayan & Sarrafzadeh, Majid. (2018). ECG Heartbeat Classification: A Deep Transferable Representation. 10. Rana and K. K. Kim, "ECG Heartbeat Classification Using a Single Layer LSTM Model," 2019 International SoC Design Conference (ISOCC), Jeju, Korea (South), 2019, pp. 267-268, doi: 10.1109/ISOCC47750.2019.9027740 References 67 11. Alarsan, Fajr & Younes, Mamoon. (2019). Analysis and classification of heart diseases using heartbeat features and machine learning algorithms. Journal of Big Data. 6. 10.1186/s40537-019-0244-x. 12. S. Chakroborty and M. A. Patil, "Real-time arrhythmia classification for large databases," 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 2014, pp. 1448-1451, doi: 10.1109/EMBC.2014.6943873. 13. R. R. Janghel and S. k. Pandey, "Classification and Detection of Arrhythmia in ECG Signal Using Machine Learning Techniques," 2019 16th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Pattaya, Thailand, 2019, pp. 101-104, doi: 10.1109/ECTICON47248.2019.8955208. 14. R. Banerjee, A. Ghose and K. Muthana Mandana, "A Hybrid CNN-LSTM Architecture for Detection of Coronary Artery Disease from ECG," 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 2020, pp. 1-8, doi: 10.1109/IJCNN48605.2020.9207044. 15. “Jupyter Notebook” (https://www.jupyter.org/) 16. “Anaconda Navigator” (https://docs.anaconda.com/anaconda/navigator/) 17. “Confusion Matrix” (https://en.wikipedia.org/wiki/Confusion_matrix/) 18. H. Dalianis, Clinical Text Mining: Secondary Use of Electronic Patient Records Springer Open, Cham Switzerland (2018), p. 47, 10.1007/978-3-319-78503-5 19. Duboue, Pablo. (2020). The Art of Feature Engineering: Essentials for Machine Learning. 10.1017/9781108671682. 20. A. (2020, October 5). 7 Feature Engineering Techniques in Machine Learning You Should Know. Analytics Vidhya. https://www.analyticsvidhya.com/blog/2020/10/7- feature-engineering-techniques-machine-learning/ 21. https://www.physionet.org/content/mitdb/1.0.0/ 22. M. Kachuee, S. Fazeli and M. Sarrafzadeh, "ECG Heartbeat Classification: A Deep Transferable Representation," 2018 IEEE International Conference on Healthcare Informatics (ICHI), New York, NY, 2018, pp. 443-444, doi: 10.1109/ICHI.2018.00092. 23. Butcher, Brandon & Smith, Brian. (2020). Feature Engineering and Selection: A Practical Approach for Predictive Models: by Max Kuhn and Kjell Johnson. Boca Raton, FL: Chapman & Hall/CRC Press, 2019, xv + 297 pp., $79.95(H), ISBN: 978-1- References 68 13-807922-9.. The American Statistician. 74. 308-309. 10.1080/00031305.2020.1790217. 24. Q.McCallum. Bad Data Hand Book: Cleaning Up The Data So You Can Get Back To Work. O'Reilly Media, 2013 25. Two Channel Histogram. (n.d.). Scientific Volume Imaging. https://svi.nl/TwoChannelHistogram/ 26. https://towardsdatascience.com/deep-learning-unbalanced-training-data-solve-it-likethis-6c528e9efea6/ 27. https://www.saedsayad.com/k_nearest_neighbors.htm/ 28. https://www.tutorialspoint.com/machine_learning_with_python/machine_learning_wi th_python_knn_algorithm_finding_nearest_neighbors.htm/ 29. https://www.javatpoint.com/machine-learning-random-forest-algorithm/ 30. https://en.wikipedia.org/wiki/Support-vector_machine/ 31. https://www.javatpoint.com/machine-learning-support-vector-machine-algorithm/ 32. https://www.geeksforgeeks.org/ml-stochastic-gradient-descent-sgd/ 33. https://en.wikipedia.org/wiki/AdaBoost/ 34. https://www.mygreatlearning.com/blog/xgboost-algorithm/ 35. https://www.programmersought.com/article/16143908973/ 36. https://www.hackerearth.com/practice/machine-learning/machine-learningalgorithms/beginners-tutorial-on-xgboost-parameter-tuning-r/tutorial/ 37. https://colah.github.io/posts/2015-08-Understanding-LSTMs/ 38. https://en.wikipedia.org/wiki/Recurrent_neural_network/ 39. https://en.wikipedia.org/wiki/Convolutional_neural_network/ 40. https://blog.bayeslabs.co/2019/06/04/All-you-need-to-know-about-Vae.html/ 41. https://ermongroup.github.io/cs228-notes/extras/vae/ 42. https://en.wikipedia.org/wiki/Deep_belief_network/ 43. https://missinglink.ai/guides/neural-network-concepts/deep-belief-networks-workapplications/ 44. Asif, Md. Asfi-Ar-Raihan, Mirza Muntasir Nishat, Fahim Faisal, Rezuanur Rahman Dip, Mahmudul Hasan Udoy, Md. Fahim Shikder , and Ragib Ahsan. “Performance Evaluation and Comparative Analysis of Different Machine Learning Algorithms in Predicting Cardiovascular Disease.” IAENG Engineering Letters, 2021-In Press. 45. Géron, Aurélien. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems. O'Reilly References 69 Media, 2019. 46. Maxwell, A., Li, R., Yang, B. et al. Deep learning architectures for multi-label classification of intelligent health risk prediction. BMC Bioinformatics 18, 523 (2017). https://doi.org/10.1186/s12859-017-1898-z/ 47. Floydhub: Practical Guide to Hyperparameters Optimization for Deep Learning Models (https://blog.floydhub.com/guide-to-hyperparameters-search-for-deep-learningmodels/) |
en_US |