Design and Numerical Analysis of Photonic Crystal Fiber Based Refractive Index Sensor

Show simple item record

dc.contributor.author Tahsin, Tahia
dc.contributor.author Hossain, Aadreeta
dc.contributor.author Mustafa, Zareen
dc.date.accessioned 2022-04-30T06:36:37Z
dc.date.available 2022-04-30T06:36:37Z
dc.date.issued 2021-03-30
dc.identifier.citation [1] S. Atakaramians, S. Afshar V., T. M. Monro, and D. Abbott. Advances in Optics and Photonics 5, 169–215 (2013) https://doi.org/10.1364/AOP.5.000169 [2] B. Bowden, J. A. Harrington, and O. Mitrofanov. Opt. Lett. 32, 2945-2947(2007) . https://doi.org/10.1364/OL.32.002945 [3] A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy. J. Opt. Soc. Am. B 28, 896- 907 (2011). https://doi.org/10.1364/JOSAB.28.000896 [4] M. Nagel, A. Marchewka, and H. Kurz. Opt. Express 14, 9944-9954 (2006). https://doi.org/10.1364/OE.14.009944 [5] Homola, J., Surface Resonance Sensors for Detection of Chemical and Biological Species. Chem. Rev., 108(2): p. 462-493, 2008. [6] Homola, J., Present and future of surface plasmon resonance biosensors. Analytical and Bioanalytical Chemistry, 377(3): p. 528-539, 2003. [7] Leidberg, B., et al., Surface Plasmon Resonance for Gas-Detection and Biosensing. Sensors and Actuators, 4(2): p. 299-304, 1983. [8] Homola, J., et al., Spectral surface plasmon biosensor for detection of staphylococcal enterotoxin B in milk. International Journal of Food Microbiology, 75(1-2): p.61-69, 2002. [9] Kretschmann, E. and Reather, H. Radiative decay of nonradiative surface plasmon excited by light. Z.Naturf. 23A: 2135-2136; 1968. [10] Kretschmann, E. Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflachenplasmaschwingugnen. Z Phys 241: 313-324; 1971. [11] Otto, A. Exitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z Phys 216: 398-410; 1968. 52 [12] Pockrand, I. et al Surface plasmon spectroscopy of organic monolayer assemblies. Surface Sci. 74: 237-244; 1978. [13] Peterlinz, K. A. and Georgiadis, R. Two-color approach for determination of thickness and dielectric constant of thin films using surface plasmon resonance. Opt.Commun. 130: 260- 266; 1996 [14] Liedberg, B. et al Principles of biosensing with an extended coupling matrix and surface plasmon resonance. Sensors and Actuators B 11: 63-72; 1993. [15] Zhang, L. and Uttamchandani, D. Optical chemical sensing employing surface plasmon resonance. Electron Lett. 23: 1469-1470; 1988. [16] Striebel, Ch. et al Characterization of biomembranes by spectral elipsometry, surface plasmon resonance and interferometry with regard to biosensor application. Biosens.Bioelectron. 9: 139-146; 1994. [17] Lofas, S. and Johnsson, B. A novel hydrogel matrix on gold surfaces in surface plasmon resonance sonsors for fast en efficient covalent immobilization of ligands. J.chem.soc., chem commun. 1526-1528; 1990. [18] Lofas, S. Dextran modified self-assembled monolayer surfaces for use in biointeraction analysis with surface plasmon resonance. Pure & Appl.Chem. 67: 829-834; 1995. [19] S. Sjolander and C. Urbaniczky, “Integrated fluid handling system for bio-molecular interaction analysis.” Analytical Chemistry vol. 63, pp. 2338-2345,1991. [20] Lofas, S. Dextran modified self-assembled monolayer surfaces for use in biointeraction analysis with surface plasmon resonance. Pure & Appl.Chem. 67: 829-834; 1995. [21] S. Lofas et al “Bioanalysis with surface plasmon resonance.” Sensors and Actuators B vol. 5, pp. 79-84,1991. [22] R. Karlsson et al “Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system.” Journal of Immunological Methods 229-240; 1991. 53 [23] K.M. Mc Peak, S.V. Jayanti, S.J. Kress, S. Meyer, S. Iotti, and A. Rossinelli, “Plasmonic films can easily be better: Rules and recipes.” ACS Photonics, vol. 2, pp. 326–333, 2015. [24] Y. Lu, C.J. Hao, B.Q. Wu, M. Musideke, L.C. Duan, W.Q. Wen, and J.Q. Yao, “Surface plasmon resonance sensor based on polymer photonic crystal fibers with metal nano layers.” Sensors, vol. 13, pp. 956–965, 2013. [25] B. D. Gupta and R. K. Verma, Surface Plasmon Resonance-Based Fiber Optic Sensors: Principle, Probe Designs, and Some Applications, Journal of Sensors, 2009,1-12,2009. [26] Zamarreño, C. R., Rivero, P. J., Hernaez, M., Goicoechea, J., Matías, I. R., & Arregui, F. J. Optical Sensors for Corrosion Monitoring. Intelligent Coatings for Corrosion Control, 603–640 ; 2015. [27] Descrovi, E., Paeder, V., Vaccaro, L., & Herzig, H.-P. A virtual optical probe based on localized Surface Plasmon Polaritons. Optics Express, 13(18), 7017. doi:10.1364/opex.13.007017, 2005. [28] Ligler, F. S. and Taitt, C. R. (eds), Optical biosensors: today and tomorrow, Elsevier Science, 2008 [29] Raether, H., [Surface plasmons on smooth and rough surfaces and on gratings], Springer, New York, 1988. [30] Barnes, W. L., Murray, W. A., Dintinger, J., Devaux, E. and Ebbesen, T. W., "Surface plasmon polaritions and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Physical Review Letters 92(10), 107401 ,2004. [31] Sharma, A. K, Jha, R. and Gupta, B. D., "Fiber-optic sensors based on surface plasmon resonance: a comprehensive review," IEEE Sensors 7(8), 1118-1129 ,2007. [32] Fan, X., White, I. M., Shopova, S. I., Zhu, H., Suter, J. D. and Sun, Y., "Sensitive optical biosensors for unlabeled targets: a review," Analytica Chimica Acta 620(1-2), 8-26 ,2008. 54 [33] Wolfbeis, O. S., "Fiber-optic chemical sensors and biosensors," Analytical Chemistry 80(12), 4269-4283 ,2008. [34] Lee, B., Roh, S. and Park, J., "Current status of micro- and nano-structured optical fiber sensors," Optical Fiber Technology 15(3), 209-221 ,2009. [35] M. A. Mollah, A. K. Paul and S. M. A. Razzak “Surface Plasmon Resonance based DualPolarized Photonic Crystal Fiber Refractive Index Sensor,” 2018 Int. Conf. Adv. Electr. Electron. Eng., pp. 1–4, 2018, Gazipur, Bangladesh. [36] A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, & F. R. M. Adrikan,” Surface Plasmon Resonance Photonic Crystal Fiber Biosensor: A Practical Sensing Approach,” IEEE Photonics Technology Letters, vol.27, no. 15, pp. 1628–1631, 2015. [37] A. A. Rifat, G. A. Mahdiraji, Y. G. Shee, J. Shawon, and F. R. Mahamd, " A Novel Photonic Crystal Fiber Biosensor Using Surface Plasmon Resonance,” Procedia Engineering, vol. 140, pp. 1–7, 2016. [38] R. K. Gangwar and V. K. Singh, “Highly Sensitive Surface Plasmon Resonance Based DShaped Photonic Crystal Fiber Refractive Index Sensor,” Plasmonics, vol. 12, no. 5, pp. 1–6, 2016. [39] E. Haque, A. Hossain, F. Ahmed, and Y. Namihira, “Surface Plasmon Resonance Sensor Based on Modified D -Shaped Photonic Crystal Fiber for Wider Range of Refractive Index Detection,” IEEE Sensors Journal, vol. 18, no.20, pp. 8287 - 8293, 2018. [40] G. Wang, S. Li, G. An, X. Wang, Y. Zhao, and W. Zhang, “Highly sensitive D-shaped photonic crystal fiber biological sensors based on surface plasmon resonance,” Optical Quantum Electronics., vol. 48, no. 1, pp. 1–9, 2016 [41] S. Sharmin, A. Bosu and S. Akhtar, “A Simple Gold-Coated Photonic Crystal Fiber Based Plasmonic Biosensor,” 2018 International Conference on Advances in Electronics Engineering, pp. 1–4, 2018, Gazipur, Bangladesh 55 [42] M. A. Mollah, A. K. Paul, and S. M. A. Razzak, “Dual Polarized Plasmonic Refractive Index Sensor based on Photonic Crystal Fiber,” 2018 10th International Conference on Computer and Electrical Engineering, pp. 73–76, 2018. [43] S. Islam, J. Sultana, A. Dinovitser, Brian W.-H. Ng, and D. Abbott, “A gold coated plasmonic sensor for biomedical and biochemical analyte detection,” 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), pp. 9–10, Nagoya Congress Center, Japan, 2018. [44] A. K. Paul, A. Bakar, S. Rahman, S. M. A. Razzak, and A. K. Sarkar, “Hybrid Cladding Structured Gold Coated Photonic Crystal Fiber Biosensor Based on Surface Plasmon Resonance,” 2nd International Conference on Electrical & Electronic Engineering (ICEEE), pp. 1–4, Rajshahi, Bangladesh, December, 2017. [45] S. Chu et al., “Design and Analysis of Surface Plasmon Resonance based Photonic QuasiCrystal Fibre Biosensor for High Refractive Index Liquid Analytes,” EEE Journal of Selected Topics in Quantum Electronics, vol. 25, no. 2 , pp. 1–8, 2018. [46] R. Hasan et al., “Spiral Photonic Crystal Fiber-Based Dual-Polarized,” IEEE Sensors Journal, vol. 18, no. 1, pp. 133–140, 2018. [47] A. Ullah, M. M. S. Hossain, and M. S. Alam, “SPR Biosensor Based on Microstructured Fiber with Lens Shaped Air Holes,” 2017 IEEE International Conference on Telecommunications and Photonics (ICTP), pp. 26–28, 2017, Dhaka, Bangladesh. [48] M. S. Islam, M. R. Islam, J. Sultana, A. Dinovitser, Brian W.-H. Ng, and D. Abbott, “Exposed Core Localized Surface Plasmon Resonance Biosensor,” Journal of the Optical Society of America B, 36(8), (2019). [49] Md. M. Rahman, F. A. Mou, M. I. H. Bhuiyan and M. R. Islam, “Photonic crystal fiber based terahertz sensor for cholesterol detection in human blood and liquid foodstuffs,” Sensing and BioSensing Research, (2020). 56 [50] F. A. Mou, Md. M. Rahman, M. R. Islam and M. I. H. Bhuiyan, “Development of a photonic crystal fiber for THz wave guidance and environmental pollutants detection,” Sensing and BioSensing Research, Volume 29, (2020). [51] Mohammad Rakibul Islam, Md. Faiyaz Kabir, Khandoker Md. Abu Talha and Md. Saiful Islam, “A novel hollow core terahertz refractometric sensor,” Sensing and Bio-Sensing Research, Volume 25, (2019). [52] M. S. Islam, J. Sultana, K. Ahmed, M. R. Islam, A. Dinovitser, Brian W.-H. Ng, D. Abbott, “Terahertz detection of alcohol using a photonic crystal fiber sensor,” Applied Optics, vol. 57, no. 10, pp. 2426-33, (2018). [53] M. S. Islam, J. Sultana, A. Dinovitser, K. Ahmed, M. R. Islam, M. Faisal, W.-H. Ng, D. Abbott, “A Novel Zeonex based photonic sensor for alcohol detection in beverages,” IEEE Inter. Conf. on Telecommunications and Photonics (ICTP), pp. 114-18, (2017). [54] S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and application," Measurement science and technology 14, R49 (2003). [55] Dora Juan Juan Hu and Ho Pui Ho, "Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications," Adv. Opt. Photon. 9, 257-314 (2017) [56] W. Knoll, “Interfaces and thin films as seen by bound electromagnetic waves,” Annual Review of Physical Chemistry, 49(1), 569-638 (1998) [57] W. J. Bender and R. E. Dessy, "Surface plasmon resonance sensor," Google Patents (1994). [58] R. Ahmmed, R. Ahmed and S. M. A. Razzak, "Design of large negative dispersion and modal analysis for hexagonal, square, FCC and BCC photonic crystal fibers," 2013 International Conference on Informatics, Electronics and Vision (ICIEV), Dhaka, pp. 1-6 (2013). [59] R. A. Aoni, R. Ahmed, and S. M. Abdur Razzak, "Design and Simulation of Duel-ConcentricCore Photonic Crystal Fiber for Dispersion Compensation," in 2013 CIOMP-OSA Summer Session on Optical Engineering, Design and Manufacturing, 57 [60] J. Rolland, J. Wyant, P. Chavel, X. Zhang, C. Wang, and Y. Bai, eds., (Optical Society of America, 2013), paper Tu2. [61] C. Caucheteur, T. Guo, and J. Albert, "Review of plasmonic fiber optic biochemical sensors: improving the limit of detection," Analytical and bioanalytical chemistry 407, 3883-3897 (2015). [62] Naik G. V., Shalaev V. M., Boltasseva A., “Alternative plasmonic materials: beyond gold and silver,” Adv Mater.;25(24):3264-3294 (2013). [63] A. A. Rifat et al., "Copper-Graphene-Based Photonic Crystal Fiber Plasmonic Biosensor," in IEEE Photonics Journal, vol. 8, no. 1, pp. 1-8, Art no. 4800408 (2016). [64] A. A. Rifat et al., "Surface Plasmon Resonance Photonic Crystal Fiber Biosensor: A Practical Sensing Approach," in IEEE Photonics Technology Letters, vol. 27, no. 15, pp. 1628-1631, 1 Aug.1, (2015). [65] Veerpal Kaur, Surindar singh, “Design of titanium nitride coated PCF-SPR sensor for liquid sensing applications”, Optical Fiber Technology, Volume 48, Pages 159-164, ISSN 1068-5200, (2019). [66] Esfahani Monfared. Y, “Refractive Index Sensor Based on Surface Plasmon Resonance Excitation in a D-Shaped Photonic Crystal Fiber Coated by Titanium Nitride,” Plasmonics 15, 535–542 (2020). [67] Y. Lu, M. T. Wang, C. J. Hao, Z. Q. Zhao and J. Q. Yao, "Temperature Sensing Using Photonic Crystal Fiber Filled With Silver Nanowires and Liquid," in IEEE Photonics Journal, vol. 6, no. 3, pp. 1-7, Art no. 6801307 (2014). [68] Yang, X., Lu, Y., Liu, B. et al., “Analysis of Graphene-Based Photonic Crystal Fiber Sensor Using Birefringence and Surface Plasmon Resonance,” Plasmonics 12, 489–496 (2017). [69] Nannan Luan, Ran Wang, Wenhua Lv, and Jianquan Yao, "Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core," Opt. Express 23, 8576-8582 (2015) 58 [70] Min Liu, Xu Yang, Ping Shum, and Hongtao Yuan, "High-sensitivity birefringent and singlelayer coating photonic crystal fiber biosensor based on surface plasmon resonance," Appl. Opt. 57, 1883-1886 (2018). [71] C. Liu et al., "Birefringent PCF-Based SPR Sensor for a Broad Range of Low Refractive Index Detection," in IEEE Photonics Technology Letters, vol. 30, no. 16, pp. 1471-1474, 15 Aug.15, (2018). [72] Mohammad Al Mahfuz, Md. Rabiul Hasan, Moriom Rojy Momota, Al Masud, and Sanjida Akter, "Asymmetrical photonic crystal fiber based plasmonic sensor using the lower birefringence peak method," OSA Continuum 2, 1713-1725 (2019). [73] Guowen An, Xiaopeng Hao, Shuguang Li, Xin Yan, and Xuenan Zhang, "D-shaped photonic crystal fiber refractive index sensor based on surface plasmon resonance," Appl. Opt. 56, 6988- 6992 (2017). [74] Y. E. Monfared, M. Hajati, C. Liang, S. Yang and M. Qasymeh, "Quasi-D-Shaped Fiber Optic Plasmonic Biosensor for High-Index Analyte Detection," in IEEE Sensors Journal, vol. 21, no. 1, pp. 17-23, (2021) [75] M. A. Mahfuz, M. A. Mollah, M. R. Momota, A. K. Paul, A. Masud, S. Akter, M. R. Hasan, “Highly sensitive photonic crystal fiber plasmonic biosensor: Design and analysis,” Optical Materials, Volume 90, Pages 315-321(2019). [76] F. Haider, R. A. Aoni, R. Ahmed, M. S. Islam and A. E. Miroshnichenko, "Propagation Controlled Photonic Crystal Fiber-Based Plasmonic Sensor via Scaled-Down Approach," in IEEE Sensors Journal, vol. 19, no. 3, pp. 962-969, 1 Feb.1, (2019). [77] A.A. Rifat, G. Amouzad Mahdiraji, Y.G. Shee, Md. Jubayer Shawon, F.R. Mahamd Adikan, “A Novel Photonic Crystal Fiber Biosensor Using Surface Plasmon Resonance,” Procedia Engineering, Volume 140, Pages 1-7 (2016). [78] J. N. Dash and R. Jha, "Graphene-Based Birefringent Photonic Crystal Fiber Sensor Using Surface Plasmon Resonance," in IEEE Photonics Technology Letters, vol. 26, no. 11, pp. 1092- 1095, June1, (2014). 59 [79] M. S. Islam et al., "A Hi-Bi Ultra-Sensitive Surface Plasmon Resonance Fiber Sensor," in IEEE Access, vol. 7, pp. 79085-79094, (2019). [80] Firoz Haider, Rifat Ahmmed Aoni, Rajib Ahmed, and Andrey E. Miroshnichenko, "Highly amplitude-sensitive photonic-crystal-fiber-based plasmonic sensor," J. Opt. Soc. Am. B 35, 2816- 2821 (2018). [81] Md. Saiful Islam, Jakeya Sultana, Ahmmed. A. Rifat, Rajib Ahmed, Alex Dinovitser, Brian W.-H. Ng, Heike Ebendorff-Heidepriem, and Derek Abbott, "Dual-polarized highly sensitive plasmonic sensor in the visible to near-IR spectrum," Opt. Express 26, 30347-30361 (2018). [82] Anna Wang, Andrew Docherty, Boris T. Kuhlmey, Felicity M. Cox, and Maryanne C. J. Large, "Side-hole fiber sensor based on surface plasmon resonance," Opt. Lett. 34, 3890-3892 (2009) [83] E. Klantsataya, A. François, H. Ebendorff-Heidepriem, P. Hoffmann, and T. Monro, “Surface Plasmon Scattering in Exposed Core Optical Fiber for Enhanced Resolution Refractive Index Sensing,” Sensors, vol. 15, no. 10, pp. 25090–25102, (2015) [84] W. C. Wong et al., "Photonic Crystal Fiber Surface Plasmon Resonance Biosensor Based on Protein G Immobilization," in IEEE Journal of Selected Topics in Quantum Electronics, vol. 19, no. 3, pp. 4602107-4602107, (2013) [85] Mohammad Rakibul Islam, A. N. M. Iftekher, Kazi Rakibul Hasan, Md. Julkar Nayen, and Saimon Bin Islam, "Dual-polarized highly sensitive surface-plasmon-resonance-based chemical and biomolecular sensor," Appl. Opt. 59, 3296-3305 (2020). [86] A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de La Chapelle, "Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finitedifference time-domain method," Physical Review B 71, 085416 (2005). [87] J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, Dong-Jin Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, J. V. Badding, “Microstructured Optical Fibers as High-Pressure Microfluidic Reactors,” Science, Vol. 311, Issue 5767, pp. 1583-1586 (2006). 60 [88] E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson and J. V. Oliver, "Numerical Analysis of a Photonic Crystal Fiber for Biosensing Applications," in IEEE Journal of Quantum Electronics, vol. 48, no. 11, pp. 1403-1410, Nov. (2012). [89] Z. Li, Z. Yu, Y. Shen, X. Ruan and Y. Dai, "Graphene Enhanced Leaky Mode Resonance in Tilted Fiber Bragg Grating: A New Opportunity for Highly Sensitive Fiber Optic Sensor," in IEEE Access, vol. 7, pp. 26641-26651, (2019). [90] A. Nooke, U. Beck, A. Hertwig, A. Krause, H. Krüger, V. Lohse, D. Negendank, J. Steinbach, “On the application of gold based SPR sensors for the detection of hazardous gases,” Sensors and Actuators B: Chemical, Volume 149, Issue 1, Pages 194-198, (2010). [91] R. Otupiri, E. K. Akowuah, S. Haxha, H. Ademgil, F. AbdelMalek and A. Aggoun, "A Novel Birefrigent Photonic Crystal Fiber Surface Plasmon Resonance Biosensor," in IEEE Photonics Journal, vol. 6, no. 4, pp. 1-11, Aug. (2014). [92] Mahfuz, M.A.; Hossain, M.A.; Haque, E.; Hai, N.H.; Namihira, Y.; Ahmed, F. A BimetallicCoated, Low Propagation Loss, Photonic Crystal Fiber Based Plasmonic Refractive Index Sensor. Sensors 19, 3794 (2019). [93] Meng, Q.-Q.; Zhao, X.; Lin, C.-Y.; Chen, S.-J.; Ding, Y.-C.; Chen, Z.-Y. Figure of Merit Enhancement of a Surface Plasmon Resonance Sensor Using a Low-Refractive-Index Porous Silica Film. Sensors 17, 1846 (2017). [94] M. S. Islam, J. Sultana, K. Ahmed, A. Dinovitser, M. R. Islam, B. W.-H. Ng and D. Abbott “A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime,” IEEE Sensors Journal 18(2), 575–582, (2018) [95] Md. Aminul Islam, M. Rakibul Islam, Md. Moinul Islam Khan, J. A. Chowdhury, F. Mehjabin, and Mohibul Islam, “Highly Birefringent Slotted Core Photonic Crystal Fiber for THz Wave Propagation,” Phys. Wave Phen., vol. 28, no. 1, pp. 58–67, (2020). 61 [96] Md. Rabiul Hasan, Sanjida Akter, Ahmmed A. Rifat, Sohel Rana, Kawsar Ahmed, Rajib Ahmed, Harish Subbaraman, Derek Abbott, “Spiral Photonic Crystal Fiber-Based Dual-Polarized Surface Plasmon Resonance Biosensor”, IEEE Sensors Journal, vol. 18, no. 1, January 1, (2018). [97] C. Liu, W. Su, Q. Liu, et al., “Symmetrical Dual D-Shape Photonic Crystal Fibers for Surface Plasmon Resonance Sensing,” Optics Express 26(7) 9039–9049 (2018). [98] Xin Chen, Li Xia, Li Chen, “Surface Plasmon Resonance Sensor Based on A Novel D Shaped Photonic Crystal Fiber for Low Refractive Index Detection,” IEEE Photon. J. 10 (1) (2018). [99] G. A. Mahdiraji, D. M. Chow, S. R. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, S. Y. Gang, F. R. M. Adikan, “Challenges and Solutions in Fabrication of Silica-Based Photonic Crystal Fibers: An Experimental Study,” Fiber and Integrated Optics, 33:1-2, 85-104 (2014). [100] X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, "A selectively coated photonic crystal fiber-based surface plasmon resonance sensor," Journal of Optics 12, 015005 (2009). [101] Rifat A.A., Rabiul Hasan M., Ahmed R., Miroshnichenko A.E., “Microstructured Optical Fiber-Based Plasmonic Sensors,” In: Hameed M., Obayya S. (eds) Computational Photonic Sensors. Springer, Cham. (2019). [102] D. Pysz, I. Kujawa, R. Stepien, M. Klimczak, A. Filipkowiski, M. Franczyk, L. Kociszewski, J. Buzniak, K. Harasny, and R. Buczynski, “Stack and draw fabrication of soft glass microstructured fiber optics”, Bulletin of the Polish Academy of Sciences: Technical Sciences, Vol. 62, No. 4, (2014). [103] A. A. Rifat, R. Ahmed, G. A. Mahd en_US
dc.identifier.uri http://hdl.handle.net/123456789/1457
dc.description Supervised by Prof. Dr. Mohammad Rakibul Islam, Department of Electrical and Electronic Engineering(EEE), Islamic University of Technology (IUT), Boardbazar, Gazipur-1704. en_US
dc.description.abstract Over the span of past decade, photonic crystal fiber (PCF) sensors utilizing surface plasmon resonance (SPR) phenomenon have shown marvelous headway. Numerous scientists have proposed a more extensive scope of SPR-based sensors at this point. However, a considerable amount of these proposed sensors either show low affectability or it is exceptionally hard to manufacture the sensors for ongoing applications. We have developed a PCF SPR sensor that has circular-shaped air holes which is easy to fabricate as well as shows high sensitivity in the visible and near-infrared spectroscopy. We have used a layer of gold covering the cladding layer of the PCF structure to generate surface plasmon excitation. An external layer is applied to minimize emission of light from the fiber core. The guiding properties and analytical evaluation are carried out using the COMSOL Multiphysics on the basis of finite element method. In x-polarization mode, the suggested structure gives maximal value of amplitude sensitivity and wavelength sensitivity (WS) of 1757.3RIU−1 (Refractive Index Unit) and 32,000 nm/RIU respectively. In addition to that, the proposed design exhibits high sensor resolution of 1.428×10–6 and figure of merit of 587.2 indicating a high-performance sensor and demonstrates birefringence of 0.004 RIU. Moreover, the proposed PCF-SPR sensor is composed of only six symmetrical circular air holes, which makes it fabrication friendly. For our next design, we have focused on reducing confinement loss and simultaneously increase wavelength sensitivity. Here we have used a single layer of hexagonal shaped lattice with circular air holes. The proposed design gives maximal AS of 1072.5 RIU-1, peak WS of 41,000 nm/RIU, and sensor resolution of 2.4×10-6 considering the xpolarization mode. The high performance of the proposed sensor and high fabrication probability makes the sensor a strong contender to be used in biomedical and biochemical applications. en_US
dc.language.iso en en_US
dc.publisher Department of Electrical and Electronic Engineering, Islamic University of Technology (IUT) The Organization of Islamic Cooperation (OIC) Board Bazar, Gazipur-1704, Bangladesh en_US
dc.title Design and Numerical Analysis of Photonic Crystal Fiber Based Refractive Index Sensor en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics