Design of fabrication friendly & highly sensitive surface plasmon resonance-based photonic crystal fiber biosensors

Show simple item record

dc.contributor.author Khan, Md. Moinul Islam
dc.contributor.author Mehjabin, Fariha
dc.contributor.author Chowdhury, Jubair Alam
dc.contributor.author Islam, Mohibul
dc.date.accessioned 2022-04-30T09:47:58Z
dc.date.available 2022-04-30T09:47:58Z
dc.date.issued 2021-03-30
dc.identifier.citation [1] D. R. Thevenot, K. Tóth, R. A. Durst, and G. S. Wilson, “Electrochemical Biosensors: Recommended Definitions and Classification,” Pure Appl. Chem., vol. 71, no. 12, pp. 2333–2348, Jan. 1999, doi: 10.1351/pac199971122333. [2] B. K. Paul, K. Ahmed, S. Asaduzzaman, and M. S. Islam, “Folded cladding porous shaped photonic crystal fiber with high sensitivity in optical sensing applications: Design and analysis,” Sens. Bio-Sensing Res., vol. 12, pp. 36–42, Feb. 2017, doi: 10.1016/j.sbsr.2016.11.005. [3] S. Chowdhury et al., “Porous shaped photonic crystal fiber with strong confinement field in sensing applications: Design and analysis,” Sens. Bio-Sensing Res., vol. 13, pp. 63–69, 2017, doi: 10.1016/j.sbsr.2017.03.002. [4] S. Sen, S. Chowdhury, K. Ahmed, and S. Asaduzzaman, “Design of a porous cored hexagonal photonic crystal fiber based optical sensor with high relative sensitivity for lower operating wavelength,” Photonic Sensors, vol. 7, no. 1, pp. 55–65, 2017, doi: 10.1007/s13320-016-0384-y. [5] I. Islam et al., “Highly birefringent single mode spiral shape photonic crystal fiber based sensor for gas sensing applications,” Sens. Bio-Sensing Res., vol. 14, no. April, pp. 30– 38, Jun. 2017, doi: 10.1016/j.sbsr.2017.04.001. [6] J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem., vol. 377, no. 3, pp. 528–539, Oct. 2003, doi: 10.1007/s00216-003- 2101-0. [7] R. Otupiri, E. K. Akowuah, S. Haxha, H. Ademgil, F. AbdelMalek, and A. Aggoun, “A Novel Birefrigent Photonic Crystal Fiber Surface Plasmon Resonance Biosensor,” IEEE Photonics J., vol. 6, no. 4, pp. 1–11, Aug. 2014, doi: 10.1109/JPHOT.2014.2335716. [8] J. Ortega-Mendoza, A. Padilla-Vivanco, C. Toxqui-Quitl, P. Zaca-Morán, D. VillegasHernández, and F. Chávez, “Optical Fiber Sensor Based on Localized Surface Plasmon Resonance Using Silver Nanoparticles Photodeposited on the Optical Fiber End,” Sensors, vol. 14, no. 10, pp. 18701–18710, Oct. 2014, doi: 10.3390/s141018701. [9] E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical analysis of a photonic crystal fiber for biosensing applications,” IEEE J. Quantum Electron., vol. 48, no. 11, pp. 1403–1410, 2012, doi: 10.1109/JQE.2012.2213803. 99 [10] A. A. Rifat et al., “Photonic crystal fiber based plasmonic sensors,” Sensors Actuators B Chem., vol. 243, pp. 311–325, May 2017, doi: 10.1016/j.snb.2016.11.113. [11] J. Piehler, A. Brecht, and G. Gauglitz, “Affinity Detection of Low Molecular Weight Analytes,” Anal. Chem., vol. 68, no. 1, pp. 139–143, Jan. 1996, doi: 10.1021/ac9504878. [12] R. G. Heideman, R. P. H. Kooyman, and J. Greve, “Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor,” Sensors Actuators B Chem., vol. 10, no. 3, pp. 209–217, Feb. 1993, doi: 10.1016/0925-4005(93)87008-D. [13] C. A. Rowe-Taitt, J. W. Hazzard, K. E. Hoffman, J. J. Cras, J. P. Golden, and F. S. Ligler, “Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor,” Biosens. Bioelectron., vol. 15, no. 11–12, pp. 579–589, Dec. 2000, doi: 10.1016/S0956-5663(00)00122-6. [14] D. Clerc and W. Lukosz, “Integrated optical output grating coupler as biochemical sensor,” Sensors Actuators B Chem., vol. 19, no. 1–3, pp. 581–586, Apr. 1994, doi: 10.1016/0925-4005(93)01090-Q. [15] R. Cush, J. M. Cronin, W. J. Stewart, C. H. Maule, J. Molloy, and N. J. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions Part I: Principle of operation and associated instrumentation,” Biosens. Bioelectron., vol. 8, no. 7–8, pp. 347–354, Jan. 1993, doi: 10.1016/0956-5663(93)80073-X. [16] “Optical Biosensors: Present & Future - Google Books.” https://books.google.com.bd/books?hl=en&lr=&id=HLGw94bcNBYC&oi=fnd&pg=P A207&dq=Homola+J,+Yee+S,+Myszka+D+(2002)+Surface+plasmon+biosensors.+In :+Ligler+FS,+Taitt+CR+(eds)+Optical+biosensors:+present+and+future.+Elsevier.&o ts=vmH128o0cE&sig=gU6k1xGIE5rn4GRxlOBe9t67wRE&redir_esc=y#v=onepage &q&f=false (accessed Mar. 06, 2021). [17] R. Stoltenburg, C. Reinemann, and B. Strehlitz, “SELEX—A (r)evolutionary method to generate high-affinity nucleic acid ligands,” Biomol. Eng., vol. 24, no. 4, pp. 381–403, Oct. 2007, doi: 10.1016/j.bioeng.2007.06.001. [18] S. Ray, G. Mehta, and S. Srivastava, “Label-free detection techniques for protein microarrays: Prospects, merits and challenges,” Proteomics, vol. 10, no. 4, pp. 731–748, Feb. 2010, doi: 10.1002/pmic.200900458. [19] E. Kretschmann and H. Raether, “Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light,” Zeitschrift für Naturforsch. A, vol. 23, no. 12, pp. 2135– 2136, Dec. 1968, doi: 10.1515/zna-1968-1247. [20] J. N. Dash, R. Das, and R. Jha, “AZO coated microchannel incorporated PCF-based SPR 100 sensor: A numerical analysis,” IEEE Photonics Technol. Lett., vol. 30, no. 11, pp. 1032– 1035, 2018, doi: 10.1109/LPT.2018.2829920. [21] S. I. Azzam, M. F. O. Hameed, R. E. A. Shehata, A. M. Heikal, and S. S. A. Obayya, “Multichannel photonic crystal fiber surface plasmon resonance based sensor,” Opt. Quantum Electron., vol. 48, no. 2, p. 142, Feb. 2016, doi: 10.1007/s11082-016-0414-4. [22] A. A. Rifat, F. haider, R. Ahmed, G. A. Mahdiraji, F. R. Mahamd Adikan, and A. E. Miroshnichenko, “Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor,” Opt. Lett., vol. 43, no. 4, p. 891, Feb. 2018, doi: 10.1364/OL.43.000891. [23] B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sensors and Actuators, vol. 4, pp. 299–304, Jan. 1983, doi: 10.1016/0250-6874(83)85036-7. [24] S. Weng, L. Pei, J. Wang, T. Ning, and J. Li, “High sensitivity D-shaped hole fiber temperature sensor based on surface plasmon resonance with liquid filling,” Photonics Res., vol. 5, no. 2, p. 103, Apr. 2017, doi: 10.1364/PRJ.5.000103. [25] M. A. Mollah, S. M. R. Islam, M. Yousufali, L. F. Abdulrazak, M. B. Hossain, and I. S. Amiri, “Plasmonic temperature sensor using D-shaped photonic crystal fiber,” Results Phys., vol. 16, p. 102966, Mar. 2020, doi: 10.1016/j.rinp.2020.102966. [26] Y. Ying, J.-K. Wang, K. Xu, and G.-Y. Si, “High sensitivity D-shaped optical fiber strain sensor based on surface plasmon resonance,” Opt. Commun., vol. 460, p. 125147, Apr. 2020, doi: 10.1016/j.optcom.2019.125147. [27] B. Han et al., “Simultaneous measurement of temperature and strain based on dual SPR effect in PCF,” Opt. Laser Technol., vol. 113, pp. 46–51, May 2019, doi: 10.1016/j.optlastec.2018.12.010. [28] S. A. Maier, “Plasmonics: The Promise of Highly Integrated Optical Devices,” IEEE J. Sel. Top. Quantum Electron., vol. 12, no. 6, pp. 1671–1677, Nov. 2006, doi: 10.1109/JSTQE.2006.884086. [29] S. P. Burgos, H. W. Lee, E. Feigenbaum, R. M. Briggs, and H. A. Atwater, “Synthesis and Characterization of Plasmonic Resonant Guided Wave Networks,” Nano Lett., vol. 14, no. 6, pp. 3284–3292, Jun. 2014, doi: 10.1021/nl500694c. [30] A. Khaleque and H. T. Hattori, “Ultra-broadband and compact polarization splitter based on gold filled dual-core photonic crystal fiber,” J. Appl. Phys., vol. 118, no. 14, p. 143101, Oct. 2015, doi: 10.1063/1.4932659. [31] W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration 101 microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Opt. Lasers Eng., vol. 58, pp. 1–8, Jul. 2014, doi: 10.1016/j.optlaseng.2014.01.003. [32] M. S. Islam, M. R. Islam, J. Sultana, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Exposed-core localized surface plasmon resonance biosensor,” J. Opt. Soc. Am. B, vol. 36, no. 8, p. 2306, Aug. 2019, doi: 10.1364/josab.36.002306. [33] M. M. Rahman, F. A. Mou, M. I. H. Bhuiyan, and M. R. Islam, “Photonic crystal fiber based terahertz sensor for cholesterol detection in human blood and liquid foodstuffs,” Sens. Bio-Sensing Res., vol. 29, p. 100356, Aug. 2020, doi: 10.1016/j.sbsr.2020.100356. [34] F. A. Mou, M. M. Rahman, M. R. Islam, and M. I. H. Bhuiyan, “Development of a photonic crystal fiber for THz wave guidance and environmental pollutants detection,” Sens. Bio-Sensing Res., vol. 29, p. 100346, Aug. 2020, doi: 10.1016/j.sbsr.2020.100346. [35] M. R. Islam, M. F. Kabir, K. M. A. Talha, and M. S. Islam, “A novel hollow core terahertz refractometric sensor,” Sens. Bio-Sensing Res., vol. 25, p. 100295, Sep. 2019, doi: 10.1016/j.sbsr.2019.100295. [36] J. Sultana, M. S. Islam, K. Ahmed, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Terahertz detection of alcohol using a photonic crystal fiber sensor,” Appl. Opt., vol. 57, no. 10, p. 2426, Apr. 2018, doi: 10.1364/ao.57.002426. [37] M. S. Islam et al., “A novel Zeonex based photonic sensor for alcohol detection in beverages,” in 2017 IEEE International Conference on Telecommunications and Photonics (ICTP), Dec. 2017, pp. 114–118, doi: 10.1109/ICTP.2017.8285905. [38] J. N. Dash and R. Jha, “SPR Biosensor Based on Polymer PCF Coated With Conducting Metal Oxide,” IEEE Photonics Technol. Lett., vol. 26, no. 6, pp. 595–598, Mar. 2014, doi: 10.1109/LPT.2014.2301153. [39] A. A. Rifat, R. Ahmed, G. A. Mahdiraji, and F. R. M. Adikan, “Highly Sensitive DShaped Photonic Crystal Fiber-Based Plasmonic Biosensor in Visible to Near-IR,” IEEE Sens. J., vol. 17, no. 9, pp. 2776–2783, May 2017, doi: 10.1109/JSEN.2017.2677473. [40] S. Sharmin, A. Bosu, and S. Akter, “A Simple Gold-Coated Photonic Crystal Fiber Based Plasmonic Biosensor,” in 2018 International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE), Nov. 2018, pp. 1–4, doi: 10.1109/ICAEEE.2018.8643003. [41] M. R. Islam, M. Arif Hossain, S. I. Ali, J. Sultana, and M. Saiful Islam, “Design and Characterization of an Ultra Low Loss, Dispersion-Flattened Slotted Photonic Crystal Fiber for Terahertz Application,” J. Opt. Commun., Nov. 2018, doi: 10.1515/joc-2018- 102 0152. [42] W. Gao et al., “Experimental investigation on supercontinuum generation by single, dual, and triple wavelength pumping in a silica photonic crystal fiber,” Appl. Opt., vol. 55, no. 33, p. 9514, Nov. 2016, doi: 10.1364/AO.55.009514. [43] A. Aming, M. Uthman, R. Chitaree, W. Mohammed, and B. M. A. Rahman, “Design and Characterization of Porous Core Polarization Maintaining Photonic Crystal Fiber for THz Guidance,” J. Light. Technol., vol. 34, no. 23, pp. 5583–5590, 2016, doi: 10.1109/JLT.2016.2623657. [44] N. Muduli and H. K. Padhy, “An optimized configuration of large mode field area PMMA photonic crystal fiber with low bending loss: a new approach,” J. Mater. Sci. Mater. Electron., vol. 27, no. 2, pp. 1906–1912, Feb. 2016, doi: 10.1007/s10854-015- 3972-5. [45] K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express, vol. 17, no. 10, p. 8592, May 2009, doi: 10.1364/OE.17.008592. [46] H. Bao, K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Fabrication and characterization of porous-core honeycomb bandgap THz fibers,” Opt. Express, vol. 20, no. 28, p. 29507, Dec. 2012, doi: 10.1364/OE.20.029507. [47] H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett., vol. 80, no. 15, pp. 2634–2636, Apr. 2002, doi: 10.1063/1.1468897. [48] M. Rabiul Hasan, M. Ariful Islam, M. S. Anower, and S. M. A. Razzak, “Low-loss and bend-insensitive terahertz fiber using a rhombic-shaped core,” Appl. Opt., vol. 55, no. 30, p. 8441, 2016, doi: 10.1364/ao.55.008441. [49] J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Light. Technol., vol. 4, no. 8, pp. 1071–1089, 1986, doi: 10.1109/JLT.1986.1074847. [50] J. Lægsgaard, N. A. Mortensen, and A. Bjarklev, “Mode areas and field-energy distribution in honeycomb photonic bandgap fibers,” J. Opt. Soc. Am. B, vol. 20, no. 10, p. 2037, Oct. 2003, doi: 10.1364/JOSAB.20.002037. [51] P. S. Maji and P. R. Chaudhuri, “Geometrical parameters dependence towards ultra-flat dispersion square-lattice PCF using tunable liquid infiltration,” in Workshop on Recent Advances in Photonics (WRAP), Dec. 2013, pp. 1–2, doi: 10.1109/WRAP.2013.6917653. 103 [52] R. Islam, M. S. Habib, G. K. M. Hasanuzzaman, S. Rana, M. A. Sadath, and C. Markos, “A Novel Low-Loss Diamond-Core Porous Fiber for Polarization Maintaining Terahertz Transmission,” IEEE Photonics Technol. Lett., vol. 28, no. 14, pp. 1537– 1540, 2016, doi: 10.1109/LPT.2016.2550205. [53] K. Ahmed and M. Morshed, “Design and numerical analysis of microstructured-core octagonal photonic crystal fiber for sensing applications,” Sens. Bio-Sensing Res., vol. 7, pp. 1–6, Mar. 2016, doi: 10.1016/j.sbsr.2015.10.005. [54] S. Li, “Equiangular spiral photonic crystal fiber for code synchronization in all-optical analog-to-digital conversion based on lumped time delay compensation scheme,” Optik (Stuttg)., vol. 127, no. 11, pp. 4693–4697, Jun. 2016, doi: 10.1016/j.ijleo.2016.02.017. [55] S. Luke, S. K. Sudheer, and V. P. M. Pillai, “Tellurite based circular photonic crystal fiber with high nonlinearity and low confinement loss,” Optik (Stuttg)., vol. 127, no. 23, pp. 11138–11142, Dec. 2016, doi: 10.1016/j.ijleo.2016.09.024. [56] A. Cerqueira S., Jr., C. M. B. Cordeiro, F. Biancalana, P. J. Roberts, H. E. HernandezFigueroa, and C. H. B. Cruz, “Nonlinear interaction between two different photonic bandgaps of a hybrid photonic crystal fiber,” Opt. Lett., vol. 33, no. 18, p. 2080, Sep. 2008, doi: 10.1364/OL.33.002080. [57] L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett., vol. 31, no. 3, p. 308, 2006, doi: 10.1364/OL.31.000308. [58] J. A. Buck and J. A., “Fundamentals of Optical Fibers, 2nd Edition,” fof, p. 352, 2004, Accessed: Mar. 07, 2021. [Online]. Available: https://ui.adsabs.harvard.edu/abs/2004fof..book.....B/abstract. [59] K. KANESHIMA, “Numerical Investigation of Octagonal Photonic Crystal Fibers with Strong Confinement Field,” IEICE Trans. Electron., vol. E89-C, no. 6, pp. 830–837, Jun. 2006, doi: 10.1093/ietele/e89-c.6.830. [60] L. G. Carrascosa et al., “Molecular inversion probe-based SPR biosensing for specific, label-free and real-time detection of regional DNA methylation,” Chem. Commun., vol. 50, no. 27, pp. 3585–3588, 2014, doi: 10.1039/C3CC49607D. [61] M. S. Islam et al., “A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime,” IEEE Sens. J., vol. 18, no. 2, pp. 575– 582, Jan. 2018, doi: 10.1109/JSEN.2017.2775642. [62] M. S. Islam, J. Sultana, A. A. Rifat, A. Dinovitser, B. Wai-Him Ng, and D. Abbott, “Terahertz Sensing in a Hollow Core Photonic Crystal Fiber,” IEEE Sens. J., vol. 18, 104 no. 10, pp. 4073–4080, May 2018, doi: 10.1109/JSEN.2018.2819165. [63] J. N. Dash and R. Jha, “Highly Sensitive Side-Polished Birefringent PCF-Based SPR Sensor in near IR,” Plasmonics, vol. 11, no. 6, pp. 1505–1509, Dec. 2016, doi: 10.1007/s11468-016-0203-8. [64] J. N. Dash and R. Das, “SPR based magnetic-field sensing in microchannelled PCF: a numerical approach,” J. Opt., vol. 20, no. 11, p. 115001, Nov. 2018, doi: 10.1088/2040- 8986/aae119. [65] J. N. Dash and R. Jha, “On the Performance of Graphene-Based D-Shaped Photonic Crystal Fibre Biosensor Using Surface Plasmon Resonance,” Plasmonics, vol. 10, no. 5, pp. 1123–1131, Oct. 2015, doi: 10.1007/s11468-015-9912-7. [66] G. P. Anderson and C. R. Taitt, “EVANESCENT WAVE FIBER OPTIC BIOSENSORS,” in Optical Biosensors, Elsevier, 2008, pp. 83–138. [67] M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express, vol. 16, no. 12, p. 8427, Jun. 2008, doi: 10.1364/OE.16.008427. [68] A. Hassani and M. Skorobogatiy, “Design criteria for microstructured-optical-fiberbased surface-plasmon-resonance sensors,” J. Opt. Soc. Am. B, vol. 24, no. 6, p. 1423, Jun. 2007, doi: 10.1364/JOSAB.24.001423. [69] X. Yu et al., “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt., vol. 12, no. 1, p. 015005, Jan. 2010, doi: 10.1088/2040- 8978/12/1/015005. [70] B. Shuai, L. Xia, Y. Zhang, and D. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Express, vol. 20, no. 6, p. 5974, Mar. 2012, doi: 10.1364/OE.20.005974. [71] N. Luan, R. Wang, W. Lv, and J. Yao, “Surface plasmon resonance sensor based on Dshaped microstructured optical fiber with hollow core,” Opt. Express, vol. 23, no. 7, p. 8576, Apr. 2015, doi: 10.1364/OE.23.008576. [72] M. E. Rahaman, R. Saha, M. S. Ahsan, and I. B. Sohn, “Design and performance analysis of a D-shaped PCF and surface plasmon resonance based glucose sensor,” 4th Int. Conf. Electr. Eng. Inf. Commun. Technol. iCEEiCT 2018, pp. 325–329, 2019, doi: 10.1109/CEEICT.2018.8628080. [73] N. Luan and J. Yao, “Refractive Index and Temperature Sensing Based on Surface Plasmon Resonance and Directional Resonance Coupling in a PCF,” IEEE Photonics J., vol. 9, no. 2, pp. 1–5, 2017, doi: 10.1109/JPHOT.2017.2667878. 105 [74] G. An, X. Hao, S. Li, X. Yan, and X. Zhang, “D-shaped photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Appl. Opt., vol. 56, no. 24, p. 6988, 2017, doi: 10.1364/ao.56.006988. [75] T. Ahmed, A. K. Paul, M. S. Anower, and S. M. A. Razzak, “Surface plasmon resonance biosensor based on hexagonal lattice dual-core photonic crystal fiber,” Appl. Opt., vol. 58, no. 31, p. 8416, Nov. 2019, doi: 10.1364/AO.58.008416. [76] F. Haider, R. A. Aoni, R. Ahmed, M. S. Islam, and A. E. Miroshnichenko, “Propagation Controlled Photonic Crystal Fiber-Based Plasmonic Sensor via Scaled-Down Approach,” IEEE Sens. J., vol. 19, no. 3, pp. 962–969, Feb. 2019, doi: 10.1109/JSEN.2018.2880161. [77] M. R. Momota and M. R. Hasan, “Hollow-core silver coated photonic crystal fiber plasmonic sensor,” Opt. Mater. (Amst)., vol. 76, pp. 287–294, Feb. 2018, doi: 10.1016/j.optmat.2017.12.049. [78] C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem., vol. 407, no. 14, pp. 3883–3897, May 2015, doi: 10.1007/s00216-014-8411-6. [79] A. Rifat, G. Mahdiraji, D. Chow, Y. Shee, R. Ahmed, and F. Adikan, “Photonic Crystal Fiber-Based Surface Plasmon Resonance Sensor with Selective Analyte Channels and Graphene-Silver Deposited Core,” Sensors, vol. 15, no. 5, pp. 11499–11510, May 2015, doi: 10.3390/s150511499. [80] E. K. Akowuah, T. Gorman, H. Ademgil, and S. Haxha, “A highly sensitive photonic crystal fibre (PCF) surface plasmon resonance (SPR) sensor based on a bimetallic structure of gold and silver,” in Proceedings of the 2012 IEEE 4th International Conference on Adaptive Science and Technology, ICAST 2012, 2012, pp. 121–125, doi: 10.1109/ICASTech.2012.6381078. [81] A. H. El-Saeed, A. E. Khalil, M. F. O. Hameed, M. Y. Azab, and S. S. A. Obayya, “Highly sensitive SPR PCF biosensors based on Ag/TiN and Ag/ZrN configurations,” Opt. Quantum Electron., vol. 51, no. 2, pp. 1–18, 2019, doi: 10.1007/s11082-019-1764- 5. [82] Q. Liu, S. Li, H. Chen, J. Li, and Z. Fan, “High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film,” Appl. Phys. Express, vol. 8, no. 4, p. 046701, Apr. 2015, doi: 10.7567/APEX.8.046701. [83] M. S. Islam et al., “Dual-polarized highly sensitive plasmonic sensor in the visible to near-IR spectrum,” Opt. Express, vol. 26, no. 23, p. 30347, Nov. 2018, doi: 106 10.1364/oe.26.030347. [84] M. R. Islam et al., “Design and analysis of birefringent SPR based PCF biosensor with ultra-high sensitivity and low loss,” Optik (Stuttg)., vol. 221, p. 165311, Nov. 2020, doi: 10.1016/j.ijleo.2020.165311. [85] M. S. Islam et al., “A Hi-Bi Ultra-Sensitive Surface Plasmon Resonance Fiber Sensor,” IEEE Access, vol. 7, pp. 79085–79094, 2019, doi: 10.1109/ACCESS.2019.2922663. [86] “RP Photonics Encyclopedia - silica fibers, optical fiber, glass, fiber optics.” https://www.rp-photonics.com/silica_fibers.html (accessed Feb. 19, 2021). [87] B. K. Paul et al., “The design and analysis of a dual-diamond-ring PCF-based sensor,” J. Comput. Electron., vol. 19, no. 3, pp. 1288–1294, Sep. 2020, doi: 10.1007/s10825- 020-01509-2. [88] T. Han, Y. G. Liu, Z. Wang, J. Guo, and J. Yu, “A High Sensitivity Strain Sensor Based on the Zero-Group-Birefringence Effect in a Selective-Filling High Birefringent Photonic Crystal Fiber,” IEEE Photonics J., vol. 10, no. 1, pp. 1–9, Feb. 2018, doi: 10.1109/JPHOT.2017.2782223. [89] A. A. Rifat et al., “Surface Plasmon Resonance Photonic Crystal Fiber Biosensor: A Practical Sensing Approach,” IEEE Photonics Technol. Lett., vol. 27, no. 15, pp. 1628– 1631, Aug. 2015, doi: 10.1109/LPT.2015.2432812. [90] M. S. Islam et al., “Localized surface plasmon resonance biosensor: an improved technique for SERS response intensification,” Opt. Lett., vol. 44, no. 5, p. 1134, Mar. 2019, doi: 10.1364/ol.44.001134. [91] J. R. DeVore, “Refractive Indices of Rutile and Sphalerite,” J. Opt. Soc. Am., vol. 41, no. 6, p. 416, Jun. 1951, doi: 10.1364/josa.41.000416. [92] G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater., vol. 25, no. 24, pp. 3264–3294, Jun. 2013, doi: 10.1002/adma.201205076. [93] S. Novais, M. S. Ferreira, and J. L. Pinto, “Determination of thermo-optic coefficient of ethanol-water mixtures with optical fiber tip sensor,” Opt. Fiber Technol., vol. 45, no. August, pp. 276–279, Nov. 2018, doi: 10.1016/j.yofte.2018.08.002. [94] M. Rakibul Islam, M. M. I. Khan, F. Mehjabin, J. Alam Chowdhury, and M. Islam, “Design of a fabrication friendly & highly sensitive surface plasmon resonancebased photonic crystal fiber biosensor,” Results Phys., vol. 19, p. 103501, Dec. 2020, doi: 10.1016/j.rinp.2020.103501. [95] M. Rakibul Islam, A. N. M. Iftekher, K. Rakibul Hasan, M. J. Nayen, and S. Bin Islam, 107 “Dual-polarized highly sensitive surface-plasmon-resonance-based chemical and biomolecular sensor,” Appl. Opt., vol. 59, no. 11, p. 3296, Apr. 2020, doi: 10.1364/ao.383352. [96] P. Bing, S. Huang, J. Sui, H. Wang, and Z. Wang, “Analysis and Improvement of a Dual-Core Photonic Crystal Fiber Sensor,” Sensors, vol. 18, no. 7, p. 2051, Jun. 2018, doi: 10.3390/s18072051. [97] S. Chakma, M. A. Khalek, B. K. Paul, K. Ahmed, M. R. Hasan, and A. N. Bahar, “Goldcoated photonic crystal fiber biosensor based on surface plasmon resonance: Design and analysis,” Sens. Bio-Sensing Res., vol. 18, pp. 7–12, Apr. 2018, doi: 10.1016/j.sbsr.2018.02.003. [98] M. Aminul Islam, M. Rakibul Islam, M. Moinul Islam Khan, J. A. Chowdhury, F. Mehjabin, and M. Islam, “Highly Birefringent Slotted Core Photonic Crystal Fiber for THz Wave Propagation,” Phys. Wave Phenom., vol. 28, no. 1, pp. 58–67, Jan. 2020, doi: 10.3103/S1541308X20010021. [99] V. Kaur and S. Singh, “Design approach of solid-core photonic crystal fiber sensor with sensing ring for blood component detection,” J. Nanophotonics, vol. 13, no. 02, p. 1, May 2019, doi: 10.1117/1.jnp.13.026011. [100] Lu Peng, Fukun Shi, Guiyao Zhou, Shu Ge, Zhiyun Hou, and Changming Xia, “A Surface Plasmon Biosensor Based on a D-Shaped Microstructured Optical Fiber With Rectangular Lattice,” IEEE Photonics J., vol. 7, no. 5, pp. 1–9, Oct. 2015, doi: 10.1109/JPHOT.2015.2488278. [101] F. Chiavaioli, C. A. J. Gouveia, P. A. S. Jorge, and F. Baldini, “Towards a uniform metrological assessment of grating-based optical fiber sensors: From refractometers to biosensors,” Biosensors, vol. 7, no. 2. MDPI AG, Jun. 21, 2017, doi: 10.3390/bios7020023. [102] X. Zhang et al., “Twist sensor based on surface plasmon resonance excitation using two spectral combs in one tilted fiber Bragg grating,” J. Opt. Soc. Am. B, vol. 36, no. 5, p. 1176, May 2019, doi: 10.1364/josab.36.001176. [103] C. Caucheteur, M. Loyez, Á. González-Vila, and R. Wattiez, “Evaluation of gold layer configuration for plasmonic fiber grating biosensors,” Opt. Express, vol. 26, no. 18, p. 24154, Sep. 2018, doi: 10.1364/OE.26.024154. [104] V. Kaur and S. Singh, “Design of titanium nitride coated PCF-SPR sensor for liquid sensing applications,” Opt. Fiber Technol., vol. 48, pp. 159–164, Mar. 2019, doi: 10.1016/j.yofte.2018.12.015. 108 [105] A. A. Rifat, G. A. Mahdiraji, Y. G. Shee, M. J. Shawon, and F. R. M. Adikan, “A Novel Photonic Crystal Fiber Biosensor Using Surface Plasmon Resonance,” in Procedia Engineering, 2016, vol. 140, pp. 1–7, doi: 10.1016/j.proeng.2015.08.1107. [106] X. Yang, Y. Lu, B. Liu, and J. Yao, “Analysis of Graphene-Based Photonic Crystal Fiber Sensor Using Birefringence and Surface Plasmon Resonance,” Plasmonics, vol. 12, no. 2, pp. 489–496, Apr. 2017, doi: 10.1007/s11468-016-0289-z. [107] M. N. Hossen, M. Ferdous, M. Abdul Khalek, S. Chakma, B. K. Paul, and K. Ahmed, “Design and analysis of biosensor based on surface plasmon resonance,” Sens. BioSensing Res., vol. 21, pp. 1–6, Nov. 2018, doi: 10.1016/j.sbsr.2018.08.003. [108] C. Liu et al., “Analysis of a highly birefringent asymmetric photonic crystal fibre based on a surface plasmon resonance sensor,” J. Mod. Opt., vol. 63, no. 12, pp. 1189–1195, Jul. 2016, doi: 10.1080/09500340.2015.1135257. [109] D. Li, W. Zhang, H. Liu, J. Hu, and G. Zhou, “High Sensitivity Refractive Index Sensor Based on Multicoating Photonic Crystal Fiber With Surface Plasmon Resonance at Near-Infrared Wavelength,” IEEE Photonics J., vol. 9, no. 2, pp. 1–8, Apr. 2017, doi: 10.1109/JPHOT.2017.2687121. [110] M. A. Mollah, A. K. Paul, and S. M. A. Razzak, “Dual Polarized Plasmonic Refractive Index Sensor based on Photonic Crystal Fiber,” in 2018 10th International Conference on Electrical and Computer Engineering (ICECE), Dec. 2018, pp. 73–76, doi: 10.1109/ICECE.2018.8636749. [111] A. K. Paul, A. K. Sarkar, and S. M. A. Razzak, “Graphene coated photonic crystal fiber biosensor based on surface plasmon resonance,” in 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), Dec. 2017, pp. 856–859, doi: 10.1109/R10- HTC.2017.8289088. [112] Z. Liu et al., “Reflective-distributed SPR sensor based on twin-core fiber,” Opt. Commun., vol. 366, pp. 107–111, May 2016, doi: 10.1016/j.optcom.2015.12.018. [113] M. Murawski, L. R. Jaroszewicz, and K. Stasiewicz, “A photonic crystal fiber splice with a standard single mode fiber,” Photonics Lett. Pol., vol. 1, no. 3, pp. 115–117, Sep. 2009, doi: 10.4302/plp.2009.3.05. [114] D. Fan et al., “Extremely High-Efficiency Coupling Method for Hollow-Core Photonic Crystal Fiber,” IEEE Photonics J., vol. 9, no. 3, pp. 1–8, Jun. 2017, doi: 10.1109/JPHOT.2017.2697969. [115] H. Wei, Y. Zhu, and S. Krishnaswamy, “Numerical Analysis of Waveguide Coupling Between Photonic Crystal Fiber and Single-Mode Fiber,” IEEE Photonics Technol. 109 Lett., vol. 27, no. 20, pp. 2142–2145, Oct. 2015, doi: 10.1109/LPT.2015.2454506. [116] H. Yokota, H. Yashima, Y. Imai, and Y. Sasaki, “Coupling Characteristics of Fused Optical Fiber Coupler Formed with Single-Mode Fiber and Photonic Crystal Fiber Having Air Hole Collapsed Taper,” Adv. Optoelectron., vol. 2016, pp. 1–8, 2016, doi: 10.1155/2016/6219895. [117] M. Al Mahfuz, M. A. Hossain, E. Haque, N. H. Hai, Y. Namihira, and F. Ahmed, “DualCore Photonic Crystal Fiber-Based Plasmonic RI Sensor in the Visible to Near-IR Operating Band,” IEEE Sens. J., vol. 20, no. 14, pp. 7692–7700, Mar. 2020, doi: 10.1109/jsen.2020.2980327. [118] M. S. Islam, J. Sultana, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “A Gold Coated Plasmonic Sensor for Biomedical and Biochemical Analyte Detection,” in 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Sep. 2018, pp. 1–2, doi: 10.1109/IRMMW-THz.2018.8510018. [119] M. N. Sakib et al., “Numerical Study of Circularly Slotted Highly Sensitive Plasmonic Biosensor: A Novel Approach,” Results Phys., vol. 17, Jun. 2020, doi: 10.1016/j.rinp.2020.103130. [120] G. A. Mahdiraji et al., “Challenges and solutions in fabrication of silica-based photonic crystal fibers: An experimental study,” Fiber Integr. Opt., vol. 33, no. 1–2, pp. 85–104, Jan. 2014, doi: 10.1080/01468030.2013.879680. [121] T. Zhao, S. Lou, X. Wang, W. Zhang, and Y. Wang, “Simultaneous Measurement of Curvature, Strain and Temperature Using a Twin-Core Photonic Crystal Fiber-Based Sensor,” Sensors, vol. 18, no. 7, p. 2145, Jul. 2018, doi: 10.3390/s18072145. [122] M. Liu, X. Yang, P. Shum, and H. Yuan, “High-sensitivity birefringent and single-layer coating photonic crystal fiber biosensor based on surface plasmon resonance,” Appl. Opt., vol. 57, no. 8, p. 1883, Mar. 2018, doi: 10.1364/AO.57.001883. [123] J. N. Dash and R. Jha, “Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photonics Technol. Lett., vol. 26, no. 11, pp. 1092– 1095, Jun. 2014, doi: 10.1109/LPT.2014.2315233. [124] M. R. Hasan et al., “Spiral photonic crystal fiber-based dual-polarized surface plasmon resonance biosensor,” IEEE Sens. J., vol. 18, no. 1, pp. 133–140, Jan. 2018, doi: 10.1109/JSEN.2017.2769720. [125] A. Aray, H. Saghafifar, and M. Soltanolkotabi, “Calculation of Dispersion Relation and Single Mode Operation in Surface Plasmon Resonance Based Fiber Optic Refractive Index Sensors,” J. Light. Technol., vol. 34, no. 11, pp. 2782–2788, Jun. 2016, doi: 110 10.1109/JLT.2016.2542199. [126] Z.-W. Ding, T.-T. Lang, Y. Wang, and C.-L. Zhao, “Surface Plasmon Resonance Refractive Index Sensor Based on Tapered Coreless Optical Fiber Structure,” J. Light. Technol., vol. 35, no. 21, pp. 4734–4739, Nov. 2017, doi: 10.1109/JLT.2017.2755668. [127] S. Jiao, S. Gu, H. Yang, H. Fang, and S. Xu, “Highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance sensor with a silver nano-continuous grating,” Appl. Opt., vol. 57, no. 28, p. 8350, Oct. 2018, doi: 10.1364/ao.57.008350. [128] E. Haque, M. A. Hossain, F. Ahmed, and Y. Namihira, “Surface Plasmon Resonance Sensor Based on Modified D-Shaped Photonic Crystal Fiber for Wider Range of Refractive Index Detection,” IEEE Sens. J., vol. 18, no. 20, pp. 8287–8293, 2018, doi: 10.1109/JSEN.2018.2865514. [129] E. Haque, M. Anwar Hossain, Y. Namihira, and F. Ahmed, “Microchannel-based plasmonic refractive index sensor for low refractive index detection,” Appl. Opt., vol. 58, no. 6, p. 1547, Feb. 2019, doi: 10.1364/AO.58.001547. [130] S. M. George, “Atomic Layer Deposition: An Overview,” Chem. Rev., vol. 110, no. 1, pp. 111–131, Jan. 2010, doi: 10.1021/cr900056b. [131] A. L. Johnson and J. D. Parish, “Recent developments in molecular precursors for atomic layer deposition,” 2018, pp. 1–53. 111 List of Pub en_US
dc.identifier.uri http://hdl.handle.net/123456789/1461
dc.description Supervised by Prof. Dr. Mohammad Rakibul Islam Professor Department of Electrical and Electronic Engineering(EEE), Islamic University of Technology (IUT), Boardbazar, Gazipur-1704. en_US
dc.description.abstract Many researchers have shown their excellence in the field of PCF-based SPR biosensors. In recent years, great designs showing high sensing performance have been proposed. However, the challenge for designing is that most of the designs either exhibit high sensitivity but have a drawback of having higher confinement loss or showing low sensitivity with lower loss. Most importantly, the designs may become complicated in order to achieve high sensitivities. We tried to minimize this tradeoff, gained higher sensitivities with considerably lower losses, and made four unique designs. Our research is distinctive, and the PCF-SPR biosensors are easy to fabricate and highly sensitive. All of our prototypes have a strategic pattern of circular air holes inside the fiber, which leads to a superior sensing performance. The evaluation of all the sensor characteristics has been done by employing the finite element method (FEM) of COMSOL Multiphysics. The gold (Au) layer used just around the fiber in our designs acts as the plasmonic material, and the layer of TiO2 increases the adhesivity of the gold and the fiber. We have optimized all the fiber parameters to achieve the best result in terms of sensitivity. We derived a maximum amplitude sensitivity (AS) of 5060 RIU−1 with a maximum sensor resolution of 1.98×10−6 from one sensor. The same sensor exhibited a maximum wavelength sensitivity (WS) of 41500 nm/RIU with a maximum sensor resolution of 2.41×10−6 . Moreover, the maximum figure of merit (FOM) procured was 1068.7 for this sensor. This sensor has also shown a fabrication tolerance limit of ±10%. Additionally, the temperature and strain sensitivities of that sensor are estimated to be 0.75 nm/◦C and 3 pm/με, respectively, along with a resolution (temperature) of 1.33×10−1 ◦C. Another sensor of ours showed an excellent birefringence of 2.23×10−3 , whereas all other performance parameter values were almost identical. One of the remaining sensors exhibited extremely low confinement loss. The maximum value of confinement loss for that sensor was found to be 3.73 dB/cm, which is extraordinary. The last sensor is exceptional in the sense that we have analyzed its performance for two different plasmonic materials (Gold and AZO) and found that it can sense analytes with very low refractive indices when AZO is used. The overall analyte sensing range of all our sensors is 1.31 to 1.43. All the designs are discussed elaborately in our thesis in the upcoming chapters. With their enhanced performance in terms of sensitivity, we believe that our SPR based PCF biosensors can potentially contribute a lot in detecting unknown analytes and medical diagnostics applications. en_US
dc.language.iso en en_US
dc.publisher Department of Electrical and Electronic Engineering, Islamic University of Technology (IUT) The Organization of Islamic Cooperation (OIC) Board Bazar, Gazipur-1704, Bangladesh en_US
dc.title Design of fabrication friendly & highly sensitive surface plasmon resonance-based photonic crystal fiber biosensors en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics