dc.identifier.citation |
1. Othman, S.M., Ba-Alwi, F.M., Alsohybe, N.T. et al. Intrusion detection model using machine learning algorithm on Big Data environment. J Big Data 5, 34 (2018). 2. R. C. Staudemeyer, “Applying long short-term memory recurrent neural networks to intrusion detection,” South Afr. Comput. J., vol. 56, no. 1, pp. 136–154, 2015. 3. Wang, Yan & Yang, Kun & Jing, Xiang & Jin, Huang. (2014). Problems of KDD Cup 99 Dataset Existed and Data Preprocessing. Applied Mechanics and Materials. 667. 218-225. 4. Yongxin Liao, Fernando Deschamps, Eduardo de Freitas Rocha Loures & Luiz Felipe Pierin Ramos (2017): Past, present and future of Industry 4.0 - a systematic literaturereview and research agenda proposal, International Journal of Production Research, 5. WannaCry, 2017 The Hacker News. Retrieved 7 August 2018. 6. Zetter, K. (2014). Countdown to Zero Day: Stuxnet and the launch of the world’s first digital weapon. Broadway books. 7. CERT, 2019. Australian Cyber security report 2019. Accessed: Jun 27, 2020. 8. Jararweh, Y.; Otoum, S.; Al Ridhawi, I. Trustworthy and sustainable smart city services at the edge. 9. Khoda, M.E., Imam, T., Kamruzzaman, J., Gondal, I. and Rahman, A., 2019. Robust Malware Defense in Industrial IoT Applications using Machine Learning with Selective Adversarial Samples. IEEE Transactions on Industry Applications. 48 Chapter 6. Bibliography 10. Bae, S.I., Lee, G.B. and Im, E.G., 2020. Ransomware detection using machine learning algorithms. Concurrency and Computation: Practice and Experience, 32(18), p.e5422. 11. Vinayakumar, R., Alazab, M., Soman, K.P., Poornachandran, P., AlNemrat, A. and Venkatraman, S., 2019. Deep learning approach for intelligent intrusion detection system. IEEE Access, 7, pp.41525-41550. 12. Zekri, M., El Kafhali, S., Aboutabit, N. and Saadi, Y., 2017, October. DDoS attack detection using machine learning techniques in cloud computing environments. In 2017 3rd International Conference of Cloud Computing Technologies and Applications (CloudTech) (pp. 1-7). IEEE. 13. Oña, D., Zapata, L., Fuertes, W., Rodríguez, G., Benavides, E. and Toulkeridis, T., 2019, October. Phishing Attacks: Detecting and Preventing Infected E-mails Using Machine Learning Methods. In 2019 3rd Cyber Security in Networking Conference (CSNet) (pp. 161-163). IEEE. 14. Cisco Annual Internet Report (2018-2023) –https://www.cisco.com, accessed Jan 20, 2021 15. Fireeye and Mandiant (2021), A Global Reset: Cyber Security Predictions, accessed Jan 20, 2021 16. D.E Rumelhart, J.L. McClelland and the PDP research group, Parallel Distributed Processing, vol. 1, MIT Press, 1986. 17. V.N. Vapnik, The Nature of Statistical Learning Theory. Springer, NY, 1995. 18. S. Haykin, Neural Networks – A comprehensive Foundation. Upper Saddle River, NJ: Prentice Hall, 1999. 19. V. Chercassky and P. Mullier, Learning from Data, Concepts, Theory and Methods. NY: John Wiley, 1998. 20. Quinlan JR, C4.5: programs for machine learning, vol. 1, Morgan kaufmann, 1993 21. Machine Learning, 24, 123-140 (1996) © 1996 Kluwer Academic Publishers. Boston. Manufactured in The Netherlands. Bagging Predictors LEO BBEIMAN Statistics Department, University qf Cal!’lbrnia. Berkele), CA 94720 Chapter 6. Bibliography 49 22. Leif E Peterson. “K-nearest neighbor”. In: Scholarpedia 4.2 (2009), p. 1883. 23. https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ ADFA-NB15- Datasets/ 24. https://www.unb.ca/cic/datasets/ids-2017.html 25. https://www.unb.ca/cic/datasets/ddos-2019.html 26. Ezukwoke, Kenneth & Zareian, Samaneh. (2019). LOGISTIC REGRESSION AND KERNEL LOGISTIC REGRESSION A comparative study of logistic regression and kernel logistic regression for binary classification. 27. Sperandei, Sandro. (2014). Understanding logistic regression analysis. Biochemia medica. 24. 12-8. 10.11613/BM.2014.003. 28. M. Sabhnani and G. Serpen, “Why machine learning algorithms fail in misuse detection on KDD intrusion detection data set,” Intell. Data Anal., vol. 8, no. 4, pp. 403–415, 2004 29. National Computer Network Emergency Technical Processing Coordination Center, The 2018 China Internet Network Security Report, People’s Posts and Telecommunications Press, Beijing, China, 2019. 30. Olasehinde, Olayemi Alese, Boniface & Adetunmbi, Adebayo. (2019). Machine learning approach for information security. International Journal of Information and Computer Security. 16. 91-101. 31. Kurniabudi, Kurniabudi & Stiawan, Deris & Dr, Darmawijoyo & Idris, Mohd Bamhdi, Alwi Budiarto, Rahmat. (2020). CICIDS-2017 Dataset Feature Analysis with Information Gain for Anomaly Detection. IEEE Access. PP. 1-1. |
en_US |