Molecular Dynamics Simulation of Two Dimensional Materials

Show simple item record

dc.contributor.author Hezam, Ahmad Fatehi Ali Mohammed
dc.contributor.author Haider, A.S.M. Redwan
dc.date.accessioned 2022-11-24T09:33:42Z
dc.date.available 2022-11-24T09:33:42Z
dc.date.issued 2022-06-06
dc.identifier.citation [1] A. Gupta, T. Sakthivel, and S. Seal, “Recent development in 2D materials beyond graphene,” Prog. Mater. Sci., vol. 73, no. February, pp. 44–126, Aug. 2015, doi: 10.1016/j.pmatsci.2015.02.002. [2] M. H. Kang, D. Lee, J. Sung, J. Kim, B. H. Kim, and J. Park, “Structure and chemistry of 2D materials,” in Comprehensive Nanoscience and Nanotechnology, vol. 1–5, 2019. [3] M. Yi and Z. Shen, “A review on mechanical exfoliation for the scalable production of graphene,” Journal of Materials Chemistry A, vol. 3, no. 22. 2015, doi: 10.1039/c5ta00252d. [4] J. Guo and K. Liu, “Recent Progress in Two-Dimensional MoTe2 Hetero-Phase Homojunctions,” Nanomaterials, vol. 12, no. 1, Jan. 2022, doi: 10.3390/NANO12010110. [5] X. Song, F. Yuan, and L. M. Schoop, “The properties and prospects of chemically exfoliated nanosheets for quantum materials in two dimensions,” Applied Physics Reviews, vol. 8, no. 1. 2021, doi: 10.1063/5.0038644. [6] A. P. Thompson et al., “LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales,” Comput. Phys. Commun., vol. 271, 2022, doi: 10.1016/j.cpc.2021.108171. [7] Numerical Simulation in Molecular Dynamics. 2007. [8] P. Hirel, “Atomsk: A tool for manipulating and converting atomic data files,” Comput. Phys. Commun., vol. 197, 2015, doi: 10.1016/j.cpc.2015.07.012. [9] K. Momma and F. Izumi, “VESTA: A three-dimensional visualization system for electronic and structural analysis,” J. Appl. Crystallogr., vol. 41, no. 3, 2008, doi: 10.1107/S0021889808012016. [10] A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool,” Model. Simul. Mater. Sci. Eng., vol. 18, no. 1, p. 015012, Dec. 2009, doi: 10.1088/0965-0393/18/1/015012. [11] K. Vollmayr-Lee, “Introduction to molecular dynamics simulations,” Am. J. Phys., vol. 88, no. 5, pp. 401–422, 2020, doi: 10.1119/10.0000654. [12] S. Deng and V. Berry, “Wrinkled, rippled and crumpled graphene: An overview of formation mechanism, electronic properties, and applications,” Materials Today, vol. 19, no. 4. 2016, doi: 10.1016/j.mattod.2015.10.002. [13] A. Castellanos-Gomez et al., “Local strain engineering in atomically thin MoS2,” Nano References 94 | P a g e Lett., vol. 13, no. 11, 2013, doi: 10.1021/nl402875m. [14] T. Cui et al., “Graphene fatigue through van der Waals interactions,” Sci. Adv., vol. 6, no. 42, Oct. 2020, doi: 10.1126/SCIADV.ABB1335. [15] X. Wang, A. Tabarraei, and D. E. Spearot, “Fracture mechanics of monolayer molybdenum disulfide,” Nanotechnology, vol. 26, no. 17, p. 175703, May 2015, doi: 10.1088/0957- 4484/26/17/175703. [16] J.-W. Jiang and Y.-P. Zhou, “Parameterization of Stillinger-Weber Potential for TwoDimensional Atomic Crystals,” Handb. Stillinger-Weber Potential Parameters TwoDimensional At. Cryst., Dec. 2017, doi: 10.5772/INTECHOPEN.71929. [17] R. Mas-Ballesté, C. Gómez-Navarro, J. Gómez-Herrero, and F. Zamora, “2D materials: To graphene and beyond,” Nanoscale, vol. 3, no. 1. 2011, doi: 10.1039/c0nr00323a. [18] K. S. Novoselov et al., “Two-dimensional gas of massless Dirac fermions in graphene,” Nature, vol. 438, no. 7065, pp. 197–200, Nov. 2005, doi: 10.1038/nature04233. [19] P. R. Wallace, “The band theory of graphite,” Phys. Rev., vol. 71, no. 9, pp. 622–634, 1947, doi: 10.1103/PhysRev.71.622. [20] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nature Nanotechnology, vol. 7, no. 11. 2012, doi: 10.1038/nnano.2012.193. [21] K. S. Novoselov, V. I. Fal’Ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature, vol. 490, no. 7419. 2012, doi: 10.1038/nature11458. [22] R. Zhang and R. Cheung, “Mechanical Properties and Applications of Two-Dimensional Materials,” in Two-dimensional Materials - Synthesis, Characterization and Potential Applications, 2016. [23] D. Er and K. Ghatak, “Atomistic modeling by density functional theory of two-dimensional materials,” in Synthesis, Modelling and Characterization of 2D Materials and their Heterostructures, 2020. [24] A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nat. 2013 4997459, vol. 499, no. 7459, pp. 419–425, Jul. 2013, doi: 10.1038/nature12385. [25] M. Huang, H. Yan, C. Chen, D. Song, T. F. Heinz, and J. Hone, “Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy,” Proc. Natl. Acad. Sci. U. S. A., vol. 106, no. 18, pp. 7304–7308, May 2009, doi: 10.1073/PNAS.0811754106. [26] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater., vol. 6, no. 3, 2007, References 95 | P a g e doi: 10.1038/nmat1849. [27] A. D. Zdetsis and E. N. Economou, “A Pedestrian Approach to the Aromaticity of Graphene and Nanographene: Significance of Huckel’s (4n+2)π Electron Rule,” J. Phys. Chem. C, vol. 119, no. 29, 2015, doi: 10.1021/acs.jpcc.5b04311. [28] P. Harris, “Transmission Electron Microscopy of Carbon: A Brief History,” C, vol. 4, no. 1, 2018, doi: 10.3390/c4010004. [29] M. A. Poothanari, Y. B. Pottathara, and S. Thomas, “Carbon nanostructures for electromagnetic shielding applications,” in Industrial Applications of Nanomaterials, 2019. [30] N. Mounet et al., “Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds,” Nat. Nanotechnol., vol. 13, no. 3, 2018, doi: 10.1038/s41565-017-0035-5. [31] P. Joensen, R. F. Frindt, and S. R. Morrison, “Single-layer MoS2,” Mater. Res. Bull., vol. 21, no. 4, 1986, doi: 10.1016/0025-5408(86)90011-5. [32] S. Beniwal et al., “Graphene-like Boron-Carbon-Nitrogen Monolayers,” ACS Nano, vol. 11, no. 3, 2017, doi: 10.1021/acsnano.6b08136. [33] Z. Shi, Z. Zhang, A. Kutana, and B. I. Yakobson, “Predicting Two-Dimensional Silicon Carbide Monolayers,” ACS Nano, vol. 9, no. 10, 2015, doi: 10.1021/acsnano.5b02753. [34] Z. Zhang, X. Liu, B. I. Yakobson, and W. Guo, “Two-dimensional tetragonal tic monolayer sheet and nanoribbons,” J. Am. Chem. Soc., vol. 134, no. 47, 2012, doi: 10.1021/ja308576g. [35] Z. Xiong, L. Zhong, H. Wang, and X. Li, “Structural defects, mechanical behaviors and properties of two‐dimensional materials,” Materials, vol. 14, no. 5. 2021, doi: 10.3390/ma14051192. [36] K. V. Emtsev et al., “Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide,” Nat. Mater. 2009 83, vol. 8, no. 3, pp. 203–207, Feb. 2009, doi: 10.1038/nmat2382. [37] Y. Y. Zhang, Q. X. Pei, and C. M. Wang, “Mechanical properties of graphynes under tension: A molecular dynamics study,” Appl. Phys. Lett., vol. 101, no. 8, 2012, doi: 10.1063/1.4747719. [38] D. Malko, C. Neiss, F. Viñes, and A. Görling, “Competition for graphene: Graphynes with direction-dependent dirac cones,” Phys. Rev. Lett., vol. 108, no. 8, 2012, doi: 10.1103/PhysRevLett.108.086804. [39] G. Li, Y. Li, H. Liu, Y. Guo, Y. Li, and D. Zhu, “Architecture of graphdiyne nanoscale films,” Chem. Commun., vol. 46, no. 19, 2010, doi: 10.1039/b922733d. References 96 | P a g e [40] Y. Li, L. Xu, H. Liu, and Y. Li, “Graphdiyne and graphyne: From theoretical predictions to practical construction,” Chemical Society Reviews, vol. 43, no. 8. 2014, doi: 10.1039/c3cs60388a. [41] X. Wu et al., “Epitaxial Growth and Air-Stability of Monolayer Antimonene on PdTe2,” Adv. Mater., vol. 29, no. 11, Mar. 2017, doi: 10.1002/ADMA.201605407. [42] C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science (80-. )., vol. 321, no. 5887, pp. 385–388, Jul. 2008, doi: 10.1126/SCIENCE.1157996/SUPPL_FILE/LEE-SOM.PDF. [43] J. Wang, F. Ma, W. Liang, and M. Sun, “Electrical properties and applications of graphene, hexagonal boron nitride (h-BN), and graphene/h-BN heterostructures,” Materials Today Physics, vol. 2. 2017, doi: 10.1016/j.mtphys.2017.07.001. [44] A. K. Geim, “Graphene: Status and Prospects,” Science (80-. )., vol. 324, no. 5934, pp. 1530–1534, Jun. 2009, doi: 10.1126/SCIENCE.1158877. [45] N. D. Mueller, J. S. Gerber, M. Johnston, D. K. Ray, N. Ramankutty, and J. A. Foley, “Closing yield gaps through nutrient and water management,” Nat. 2012 4907419, vol. 490, no. 7419, pp. 254–257, Aug. 2012, doi: 10.1038/nature11420. [46] M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 2013 54, vol. 5, no. 4, pp. 263–275, Mar. 2013, doi: 10.1038/nchem.1589. [47] R. Kappera et al., “Phase-engineered low-resistance contacts for ultrathin MoS2 transistors,” Nat. Mater., vol. 13, no. 12, 2014, doi: 10.1038/nmat4080. [48] Y.-C. Lin, D. O. Dumcenco, Y.-S. Huang, and K. Suenaga, “Atomic mechanism of phase transition between metallic and semiconducting MoS2 single-layers,” 2013. [49] K. A. N. Duerloo, Y. Li, and E. J. Reed, “Structural phase transitions in two-dimensional Mo-and W-dichalcogenide monolayers,” Nat. Commun., vol. 5, 2014, doi: 10.1038/ncomms5214. [50] X. Chen, C. Liu, and S. Mao, “Environmental Analysis with 2D Transition-Metal Dichalcogenide-Based Field-Effect Transistors,” Nano-Micro Lett. 2020 121, vol. 12, no. 1, pp. 1–24, Apr. 2020, doi: 10.1007/S40820-020-00438-W. [51] “On the theory of superconductivity: the one-dimensional case,” Proc. R. Soc. London. Ser. A. Math. Phys. Sci., vol. 223, no. 1154, 1954, doi: 10.1098/rspa.1954.0116. [52] K. Kang, S. Chen, and E. H. Yang, “Synthesis of transition metal dichalcogenides,” in Synthesis, Modelling and Characterization of 2D Materials and their Heterostructures, References 97 | P a g e 2020. [53] S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, “2D transition metal dichalcogenides,” Nat. Rev. Mater. 2017 28, vol. 2, no. 8, pp. 1–15, Jun. 2017, doi: 10.1038/natrevmats.2017.33. [54] “2D Materials: An Introduction to Two-Dimensional Materials | Ossila.” [Online]. Available: https://www.ossila.com/pages/introduction-2d-materials. [Accessed: 31-May2022]. [55] E. Yang, H. Ji, and Y. Jung, “Two-Dimensional Transition Metal Dichalcogenide Monolayers as Promising Sodium Ion Battery Anodes,” J. Phys. Chem. C, vol. 119, no. 47, 2015, doi: 10.1021/acs.jpcc.5b09935. [56] P. Gao, L. Wang, Y. Zhang, Y. Huang, and K. Liu, “Atomic-Scale Probing of the Dynamics of Sodium Transport and Intercalation-Induced Phase Transformations in MoS2,” ACS Nano, vol. 9, no. 11, 2015, doi: 10.1021/acsnano.5b04950. [57] D. Su, S. Dou, and G. Wang, “Ultrathin MoS2 nanosheets as anode materials for sodiumion batteries with superior performance,” Adv. Energy Mater., vol. 5, no. 6, 2015, doi: 10.1002/aenm.201401205. [58] X. Sun, Z. Wang, and Y. Q. Fu, “Defect-Mediated Lithium Adsorption and Diffusion on Monolayer Molybdenum Disulfide,” Sci. Rep., vol. 5, 2015, doi: 10.1038/srep18712. [59] Y. M. Chen, X. Y. Yu, Z. Li, U. Paik, and X. W. Lou, “Hierarchical MoS2 tubular structures internally wired by carbon nanotubes as a highly stable anode material for lithium-ion batteries,” Sci. Adv., vol. 2, no. 7, 2016, doi: 10.1126/sciadv.1600021. [60] V. Sharma, K. Ghatak, and D. Datta, “Two-dimensional materials and its heterostructures for energy storage,” in Synthesis, Modelling and Characterization of 2D Materials and their Heterostructures, 2020. [61] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol., 2011, doi: 10.1038/nnano.2010.279. [62] A. A. Soluyanov et al., “Type-II Weyl semimetals,” Nat. 2015 5277579, vol. 527, no. 7579, pp. 495–498, Nov. 2015, doi: 10.1038/nature15768. [63] B. A. Joyce, “Molecular beam epitaxy,” Reports Prog. Phys., vol. 48, no. 12, p. 1637, Dec. 1985, doi: 10.1088/0034-4885/48/12/002. [64] J. W. Chung, Z. R. Dai, and F. S. Ohuchi, “WS2 thin films by metal organic chemical vapor deposition,” J. Cryst. Growth, vol. 186, no. 1–2, pp. 137–150, Mar. 1998, doi: 10.1016/S0022-0248(97)00479-X. References 98 | P a g e [65] “Epitaxial growth of a 2D transition metal dichalcogenide lateral heterojunction.” [Online]. Available: https://spie.org/news/6470-epitaxial-growth-of-a-2d-transition-metaldichalcogenide-lateral-heterojunction?SSO=1. [Accessed: 31-May-2022]. [66] A. Kuc, N. Zibouche, and T. Heine, “Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 83, no. 24, pp. 1–4, 2011, doi: 10.1103/PhysRevB.83.245213. [67] P. Geerlings, F. De Proft, and W. Langenaeker, “Conceptual density functional theory,” Chem. Rev., vol. 103, no. 5, pp. 1793–1873, 2003, doi: 10.1021/cr990029p. [68] W. Kohn, “Nobel lecture: Electronic structure of matter - Wave functions and density functional,” Rev. Mod. Phys., vol. 71, no. 5, pp. 1253–1266, 1999, doi: 10.1103/revmodphys.71.1253. [69] P. Johari and V. B. Shenoy, “Tuning the Electronic Properties of Semiconducting Transition Metal Dichalcogenides by Applying Mechanical Strains,” ACS Nano, vol. 6, no. 6, pp. 5449–5456, Jun. 2012, doi: 10.1021/nn301320r. [70] I. S. I. Web, S. This, H. Press, M. Science, N. York, and A. Nw, “Graphene : Status and Prospects,” vol. 1530, no. 2009, 2012, doi: 10.1126/science.1158877. [71] X. Xu, W. Yao, D. Xiao, and T. F. Heinz, “Spin and pseudospins in layered transition metal dichalcogenides,” Nature Physics, vol. 10, no. 5. 2014, doi: 10.1038/nphys2942. [72] A. Splendiani et al., “Emerging photoluminescence in monolayer MoS2,” Nano Lett., vol. 10, no. 4, pp. 1271–1275, 2010, doi: 10.1021/nl903868w. [73] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: A new directgap semiconductor,” Phys. Rev. Lett., 2010, doi: 10.1103/PhysRevLett.105.136805. [74] P. Cudazzo, I. V. Tokatly, and A. Rubio, “Dielectric screening in two-dimensional insulators: Implications for excitonic and impurity states in graphane,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 84, no. 8, pp. 1–7, 2011, doi: 10.1103/PhysRevB.84.085406. [75] A. Ramasubramaniam, “Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 86, no. 11, p. 115409, Sep. 2012, doi: 10.1103/PhysRevB.86.115409. [76] H. P. Komsa and A. V. Krasheninnikov, “Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles,” Phys. Rev. B - Condens. Matter M en_US
dc.identifier.uri http://hdl.handle.net/123456789/1508
dc.description Supervised by Mr.Sayedus Salehin, Assistant Professor, and Dr. Md. Rezwanul Karim, Department of Mechanical and Chemical Engineering(MPE), Islamic University of Technology(IUT), Board Bazar, Gazipur-1704, Bangladesh en_US
dc.description.abstract Ultra-thin materials like Graphene and Transition Metal dichalcogenides are a novel class of materials with robust applications in electronic devices. These 2D materials are one of the main driving forces behind the rise of nanotechnology. Therefore, researchers need to characterise such materials to find their suitable usage. These materials have multiple properties such as electronic, optical and mechanical. Mechanical properties such as elasticity, strength and plasticity define a material's usage. There are two common ways to investigate these materials. One such is Classical Mechanics, and the other is Density functional theory(DFT). This study focuses on the application of Molecular dynamics (MD) simulation to derive stress-strain relationships of such materials. LAMMPS is a tool that aids in performing the simulation. Interatomic potentials such as AIREBO and Stillinger-Weber potential are used to derive the required outcomes. The visual simulation results aid us in understanding and describing their fracture behaviour. In our work, we primarily focus on the temperature-dependent fracture to determine the ultimate tensile stress(UTS) of a material. Initially, we worked to examine the stress-strain relationship of armchair graphene monolayer due to varying temperatures from 300K to 2100K. Then, we thoroughly investigate molybdenum disulfide (MoS2) and molybdenum telluride (MoTe2) using the parameterised Stillinger-Weber potential. Finally, the fracture strength of MoTe2 is determined from 100K to 600K at an interval of 100K. The results for both armchair and zigzag are tabulated and plotted. We can observe that for each corresponding temperature, the armchair MoTe2 is stronger than zigzag MoTe2. Furthermore, we find that the young's modulus is unaffected due to the temperature change, which could help to determine the range and the application of the material in different field. Keywords: 2D mat en_US
dc.language.iso en en_US
dc.publisher Department of Mechanical and Production Engineering(MPE), Islamic University of Technology(IUT) en_US
dc.subject 2D materials, molybdenum telluride, molecular dynamics, Stillinger weber potential, Fracture mechanics. en_US
dc.title Molecular Dynamics Simulation of Two Dimensional Materials en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics