| Login
dc.contributor.author | Saadat, Sadman | |
dc.contributor.author | Anan, Md. Abid Hasan | |
dc.date.accessioned | 2017-11-23T06:20:11Z | |
dc.date.available | 2017-11-23T06:20:11Z | |
dc.date.issued | 2016-11-20 | |
dc.identifier.citation | 1.Preetkanwal Singh, Sarabjeet Singh Sidhu &H.S.Payal-Fabrication and Machining of Metal Matrix Composites: A Review, Materials and Manufacturing Processes, DOI: 10.1080/10426914.2015.1025976; 2.Callister, William D. Fundamentals of materials science and engineering. (2001). 3.G.S. Hanumanth, G.A. Irons, Particle incorporation by melt stirring for the production of metal-matrix composites, J. Mater. Sci. 28(1993) 2459–2465. 4.Y. Sahin, S. Murphy, The effect of fibre orientation of the dry sliding wear of borsic-reinforced 2014 aluminium alloy, J. Mater. Sci. 34 (1996) 5399–5407. 5.K. Purazrang, K.U. Kainer, B.L. Mordike, Fracture toughness behaviour of a magnesium alloy metal-matrix composite produced by the infiltration technique, Composites 22 (6) (1991) 456–462. 6.J. Dinwoodie, Automotive applications for MMCs based on short staple alumina fibres, SAE Technical Paper Series, Int. Con. Exp.,Detroit, MI, 1987, pp. 23–27 7.M.J. Kocazac, S.C. Khatri, J.E. Allison, M.G. Bader, et al., MMCs, for ground vehicle aerospace and industrial applications, in: Suresh, et al. (Eds.), Fundamentals of Metal Matrix Composites, Butterworths, Guildford, UK, 1993, p. 297. 8.M.K.Surappa-Aluminium matrix composites: Challenges and opportunities;S¯adhan¯aVol.28,Parts1&2,February/April 2003, pp. 319–334 44 9.Dornfeld D (2004) Strategies for preventing and minimizing burr formation, pp 1–18. http://repositories.cdlib.org/lma/codef/dornfeld_1_04 10. Stephens JR. High temperature metal matrix composites for future aerospace systems. NASA TM 1987;100–212. 11. Taya M, Arsenault RJ. Metal matrix composites: thermomechanical behavior. vol. 4. Elmsford, NY: Pergamon Press; 1989. 12. McDanels DL. Metall Trans 1985;16A:1105–15. 13. Lloyd DJ. Int Mater Rev 1994;39:1–23. 14.G. B. Veeresh Kumar, C. S. P. Rao, N. Selvaraj, M. S. Bhagyashekar "Studies on Al6061-SiC and Al7075-Al2O3Metal Matrix Composites";Journal of Minerals & Materials Characterization & Engineering, Vol. 9, No.1, pp.43-55, 2010 1.J.M. Wu, Z.Z. Li, ―Contributions of the particulate reinforcement to dry sliding wear resistance of rapidly solidified Al-Ti alloys‖, Wear244, 147–153, 2000. 15.M. Kok "Production and mechanical properties of Al2O3particle-reinforced 2024 aluminium alloy composites";Journal of Materials Processing Technology 161 (2005) 381–387 16.M.K.Aghajanian,R.A.Langensiepen,M.A.Rocazella,J.T.Leighton,C.A.Andersson-The effect of particulate loading on the mechanical behaviour of AI203/AI Metal-Matrix composites;JOURNAL OF MATERIALS SCIENCE 28 (1993) 6683-6690 45 17.K. Bhansali, R. Mehrabian, Abrasive wear of aluminum–matrix composites, J. Met. 349 (1982) 30–40 18.A.G. Wang, I.M. Hutchings, Wear of alumina-fiberaluminum composites by two body abrasion, Mater. Sci. Technol. 5 (1989) 71–76. 19.S.V. Prasad, P.K. Rohatgi, Tribological properties of Al alloy particles composites, J. Met. 11 (1987) 1–14 20.Y. Pan, M.E. Fine, H.S. Cheng, P.K. Rohatgi, P.J. Blau, C.S.Yust, Tribology of Composite Materials, ASM Materials Park, 1990,pp. 93–101 21.M.K. Surappa, S.V. Prasad, P.K. Rohetgi, Wear and abrasion of cast Al–alumina particle composites, Wear 77 (1982) 295–302. 22.A.M. Al-Qutub, I.M. Allam, T.W. Qureshi, Wear properties of 10% submicron Al2O3/6061 aluminum alloy composite, Int. J. Appl. Mech. Eng.7 (2002) 329–334 23.A.M. Al-Qutub, I.M. Allam, T.W. Qureshi,Effect of sub-micron Al2O3concentration on dry wear properties of 6061 aluminum based composite,Journal of Materials Processing Technology 172 (2006) 327–331 24. Prasad S.V. and Asthana R., Aluminum metal–matrix composites for automotive applications: tribological considerations, Tribology Letters, 17, 2004, 445-45 25.Sannino A.P. and Rack H.J., Dry sliding wear of discontinuously reinforced aluminum composites: review and discussion, Wear, 189, 1995, 1-19 46 26.Venkataraman B. and Sundararajan G., The sliding wear behaviour of Al-SiC particulate composites - I. Macrobeheviour, Acta mater., 44, 2, 1996, 451-460 27.P.C.R. Nunes and L.V. Ramanathan-Corrosion Behavior of Alumina-Aluminum and Silicon Carbide-Aluminum Metal-Matrix Composites;NACE International 1995 28.A.D. Sarkar, Friction and Wear(Academic Press, London,1980) 29.S.V. Prasad and K.R. Mecklenburg, Lubri. Engi. 50 (1994) 511. 30.B.C. Pai, P.K. Rohatgi and S. Venaktesh, Wearbol 30(1) (1974) 117 31.P.K. Rohatgi and B.C. Pai, Wear 59 (1980) 323 32.B.P. Krishnan, N. Raman, K. Narayanswamy and P.K. Rohatgi, Wear 80 (1980) 205 33.S. Biswas and P.K. Rohatgi, Tribol. Int. 16(2) (1983) 89 34.M.K. Surappa and P.K. Rohatgi, Metals Technol. 5 (1978) 358. 35.Ames, W., and A. T. Alpas. "Sliding wear of an Al-Si alloy reinforced with silicon carbide particles and graphite flakes." Friction and wear technology for advanced composite materials (A 96-16704 03-24), Materials Park, OH, ASM International, 1995, (1995): 27-35. 36.Liu YB, Hu JD, Cao ZY, Rohatgi PK. Wear resistance of laser processed Al–Si–graphitepcomposites. Wear 1997;206:83–6 37.Lin CB, Chang RJ, Weng WP. A study on process and tribological behavior of Al alloy/Gr (p) composite. Wear 1998;217:167–74. 47 38.Rohatgi PK, Asthana R, Das S. Int Met Rev 1986;31(3):115 39.O. Yılmaza, S. Buytoz-Abrasive wear of Al2O3-reinforced aluminium-based MMCs;Composites Science and Technology61 (2001) 2381–2392 40.Songmene, V., and M. Balazinski. "Machinability of graphitic metal matrix composites as a function of reinforcing particles." CIRP Annals-Manufacturing Technology 48.1 (1999): 77-80. 41.Basavarajappa, S., Chandramohan, G., Prabu, M., Mukund, K.,Ashwin, M., 2007. Drilling of hybrid metal matrix composites—workpiece surface integrity. Int. J. Machine Tools Manuf. 47, 92–96 42.Krishnamurthy L, Sridhara BK, Abdul Budan D. Comparative study on the machinability aspects of aluminium silicon carbide and aluminium graphite composite. Mater Manuf Process 2007;22:903–8. 43. H. Hocheng, S.B. Yen, T. Ishihara, B.K. Yen, Fundamental turning characteristics of a tribology-favored graphite/aluminum alloy composite material, Compos. A 28A (1997) 883–890. 44.H.S. Chu, K.S. Liu, J.W. Yeh, An in situ composite of Al (graphite, Al4C3) produced by reciprocating extrusion, Mater. Sci. Eng. 277A (2000) 25–32. 45.Ciftci I., Turker., Sekar U. Mater. Design. 25 (2004) 251. 46.Seeman M., Ganesan G., Karthikeyan R., Velayudham A. Int. J. Adv. Technol. 48 (2010) 613 47.Palanikumar K., Karthikeyan R. Mater. Design. 28 (2007) 1584 48 48.Saravanakumar A., Sasikumar P. IJMEMS. 5(1) (2012) 19. 49.Pavlo Davim J., Conceicao Antonio C.A. J. Mat. Pro. Tech. 112 (2001) 78. 50.Basavarajappa S., Chandramohan G., Paula davim J., Prabhu M., Mukund K., Ashwin M., Prasannakumar M. Int. J. Adv. Manuf. Technol. 35 (2008) 1244. 51.Sivasankaran S., Saminathan E., Sidharth S., Harisagar PT., Sasikumar P. Procedia Eng. 5 (2014) 2122. 52.Saravanakumar A., Sasikumar P., Sivasankaran S. Procedia Eng. 97 (2014) 951 53.Metin kok. Int. J. Adv. Manuf. Technol. 55 (2011) 911 54.Jeyaraman P., Maheshkumar L. Procedia Eng. 97 (2014) 197. 55.Venkatesan K., Ramanujam R., Joel J., Jeyapandiarajan P., Vignesh M., DarshJitenTolia., Venkata Krishna R. Procedia Eng. 97 (2014) 677. 56.Juan Carlos Campos Rubio., Leandro Jose da silva., Wanderson de Oliveira Leite., TulioHallakPanzera., Sergio Luiz Moni Ribeiro Filho., Joao Paulo Davim. Composite:Part B. 55 (2013) 338 57.El-Gallab M, Sklad M (1998) Machining of Al/SiC particulate metal–matrix composites part II: work piece surface integrity. J Mater Process Technol 83:277–285 58.Zhang JZ, Chen JC (2009) Surface roughness optimization in a drilling operation using the Taguchi design method. Mater Manuf Process 24:459–467 49 59.Brown CA, Surappa MK (1988) The machinability of a cast aluminum alloy–graphitic particle composite. Mater Sci Eng A 102:31–37 60.Konig W, Grass P (1989) Quality definition and assessment in drilling of fibre reinforced thermosets. CIRP Ann 38(1):119–124 61.Darwish SM, Niazi A, Ghaneya A (1992) Phase stability of duralumin machined with bonded and brazed carbide tools. Int J Mach Tools Manuf 32(4):593–600 62.Monaghan J, O‘Reily P (1992) Machinability of an alloy/silicon carbide metal matrix composite. J Process Adv Mater 2:37–46 63.Monaghan J, O‘Reilly P (1992) The drilling of an Al/SiC metal–matrix composite. J Mater Process Technol 33:469–480 64. Oden M, Ericsson T (1996) Near surface deformation in alumina– silicon carbide whisker composite due to surface machining. J Am Ceram Soc 79:2134–2140 65.Davim JP (2003) Study of drilling metal–matrix composites based on the Taguchi techniques. J Mater Process Technol 132:250–254 66.Tosun G, Muratoglu M (2004) The drilling of Al/SiCp metal– matrix composites. Part II: workpiece surface integrity. Compos Sci Technol 64:1413–1418 67.Tosun N, Ozler L (2004) Optimization for hot turning operations with multiple performance characteristics. Int J AdvManufTechnol 23:777–778 50 68.A. Saravanakumar, P. Sasikumar, N. Nilavusri-Optimization of Machining Parameters using Taguchi Method for Surface Roughness;J. Mater. Environ. Sci. 7 (5) (2016) 1556-1561 69.S. Basavarajappa, G. Chandramohan, J. Paulo Davim-Some studies on drilling of hybrid metal matrix composites based on Taguchi techniques;journal of materials processing technology 196 (2008)332–338 70.Barnes S, Pashby IR, Hashim AB (1999) Effect of heat treatment on the drilling performance of aluminium/SiC MMC. ApplCompos Mater 6(2):121–138 71.Jadoun RS, Kumar P, Mishra BK, Mehta RCS (2006) Optimization of process parameters for ultrasonic drilling of advanced engineering ceramics using the Taguchi approach. EngOptim 38(7):771–787 72. Rajmohan T., Palanikumar K., Madhavan Harish G., Procedia. Eng. 38 (2012) 56. 73.A. Saravanakumar,P.Sasikumar-Assessment of factors influencing burr height on the machining of particle reinforced hybrid composites ;J. Mater. Environ. Sci. 6 (5) (2015) 1638-1645 74.V.N. Gaitonde, S.N. Karnik, Minimizing burr size in drilling using artificial neural network (ANN)-particle swarm optimization (PSO) approach, JIntellManuf, DOI 10.1007/s10845-010-0481-5. 75. T. Rajmohan, K. Palanikumar, S.Prakash,- Grey-fuzzy algorithm to optimise machining parameters in drilling of hybrid metal matrix composites , Compos Part B-Eng 50 (2013) 297–308. 51 76.Palanisamy Shanmughasundaram, Ramanathan Subramanian, Study of parametric optimization of burr formation in step drilling of eutectic Al–Si alloy–Gr composites, J Matr Res Technol. 3-2 (2014) 150-157. 77.S.S. Pande and H.P. Relekar: Int. J. Machine Tool Design Research Vol. 26 (1986), p. 339-348. 78. Sung-Lim Koand Jing-Koo Lee: Materials ProcessingTechnology Vol. 113 (2011),p. 392- 398. 79.Nihat Tosun: Int. J. Adv. Mfg. Tech, Vol. 28 (2006), p. 450- 455. 80.Lin TR (2002) Cutting behavior of aTiN-coated carbide drill with curved cutting edges during the high-speed machining of stainless steel.J Mater Process Technol 127:8–16 81.A. MUNITZ, M. METZGER and R. MEHRABIAN, Metall.Trans. 10A (1979) 1491 82.A. Manna, H.S. Bains and P.B. Mahapatra Experimental study on fabrication of Al/Al2O3/Grp metal matrix composites,2011 | en_US |
dc.identifier.uri | http://hdl.handle.net/123456789/158 | |
dc.description | Supervised by Dr. Mohammad Ahsan Habib Assistant Professor Department of Mechanical & Chemical Engineering Islamic University of Technology (IUT), OIC Board Bazar, Gazipur | en_US |
dc.description.abstract | Drilling is a simple and common metal removal process and is important for the final fabrication stage prior to application.This paper discusses the influence of cutting parameters on drilling characteristics of pure Aluminium (Al) plate and Aluminium (Al) metal matrix composites (MMCs) reinforced with 3wt% Graphite(Gr) and 5wt%, 10wt%, 15% Alumina (Al2O3). The composites are fabricated using stir casting method. The experiments were conducted to study the effect of spindle speed and feed rate on surface roughness and burr height using high speed steel twist drills of 12 mm diameter having various point angles and lip angles. The results reveal that the alumina- graphite reinforced composites have better surface finish and improved burr heights the than unreinforced sample. Decrement of surface roughness and burr height occur with the increment of the amount of reinforcement. The spindle speed and feed rate extensively affect the surface roughness and burr height of the drilled hole. | en_US |
dc.language.iso | en | en_US |
dc.publisher | IUT, MCE | en_US |
dc.title | Investigation of Surface Roughness and Burr Height of Al/Al2O3/Gr Metal Matrix Composite for Various Drilling Parameters | en_US |
dc.type | Thesis | en_US |