dc.identifier.citation |
[1] E. Estrada, P. Nava, H. Nazeran, K. Behbehani, J. Burk, and E. Lucas, “Itakura distance: A useful similarity measure between eeg and eog signals in computer-aided classification of sleep stages,” in 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, pp. 1189–1192, IEEE, 2006. [2] Y. Li, F. Yingle, L. Gu, and T. Qinye, “Sleep stage classification based on eeg hilbert-huang transform,” in 2009 4th IEEE Conference on Industrial Electronics and Applications, pp. 3676–3681, IEEE, 2009. [3] F. Ebrahimi, M. Mikaili, E. Estrada, and H. Nazeran, “Assessment of itakura distance as a valuable feature for computer-aided classification of sleep stages,” in 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3300–3303, IEEE, 2007. [4] A. M. Mora, C. M. Fernandes, L. J. Herrera, P. A. Castillo, J. J. Merelo, F. Rojas, and A. C. Rosa, “Sleeping with ants, svms, multilayer perceptrons and soms,” in 2010 10th International Conference on Intelligent Systems Design and Applications, pp. 126–131, IEEE, 2010. [5] M. Vatankhah, M.-R. Akbarzadeh-T, and A. Moghimi, “An intelligent system for diagnosing sleep stages using wavelet coefficients,” in The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–5, IEEE, 2010. [6] K. A. I. Aboalayon, M. Faezipour, W. S. Almuhammadi, and S. Moslehpour, “Sleep stage classification using eeg signal analysis: a comprehensive survey and new investigation,” Entropy, vol. 18, no. 9, p. 272, 2016. [7] K. A. I. Aboalayon, M. Faezipour, W. S. Almuhammadi, and S. Moslehpour, “Sleep stage classification using eeg signal analysis: a comprehensive survey and new investigation,” Entropy, vol. 18, no. 9, p. 272, 2016. 32 [8] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, et al., “{TensorFlow}: A system for {Large-Scale} machine learning,” in 12th USENIX symposium on operating systems design and implementation (OSDI 16), pp. 265–283, 2016. [9] D. Gorur, U. Halici, H. Aydin, G. Ongun, F. Ozgen, and K. Leblebicioglu, “Sleep spindles detection using short time fourier transform and neural networks,” in Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN’02 (Cat. No. 02CH37290), vol. 2, pp. 1631–1636, IEEE, 2002. [10] L. Huang, Q. Sun, and J. Cheng, “Novel method of fast automated discrimination of sleep stages,” in Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439), vol. 3, pp. 2273–2276, IEEE, 2003. [11] U. R. Abeyratne, V. Swarnkar, S. I. Rathnayake, and C. Hukins, “Sleep-stage and event dependency of brain asynchrony as manifested through surface eeg,” in 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 709–712, IEEE, 2007. [12] A. R. See and C.-K. Liang, “A study on sleep eeg using sample entropy and power spectrum analysis,” in 2011 Defense Science Research Conference and Expo (DSR), pp. 1–4, IEEE, 2011. [13] V. Jurcak, D. Tsuzuki, and I. Dan, “10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems,” Neuroimage, vol. 34, no. 4, pp. 1600–1611, 2007. [14] K. A. Aboalayon and M. Faezipour, “Multi-class svm based on sleep stage identification using eeg signal,” in 2014 IEEE Healthcare Innovation Conference (HIC), pp. 181–184, IEEE, 2014. [15] M. K. Delimayanti, B. Purnama, N. G. Nguyen, M. R. Faisal, K. R. Mahmudah, F. Indriani, M. Kubo, and K. Satou, “Classification of brainwaves for sleep stages by high-dimensional fft features from eeg signals,” Applied Sciences, vol. 10, no. 5, p. 1797, 2020. 33 [16] X. Shuyuan, W. Bei, Z. Jian, Z. Qunfeng, Z. Junzhong, and M. Nakamura, “Notice of removal: An improved k-means clustering algorithm for sleep stages classification,” in 2015 54th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), pp. 1222–1227, IEEE, 2015. [17] T. Lajnef, S. Chaibi, P. Ruby, P.-E. Aguera, J.-B. Eichenlaub, M. Samet, A. Kachouri, and K. Jerbi, “Learning machines and sleeping brains: automatic sleep stage classification using decision-tree multi-class support vector machines,” Journal of neuroscience methods, vol. 250, pp. 94–105, 2015. [18] S. Güneş, K. Polat, and Ş. Yosunkaya, “Efficient sleep stage recognition system based on eeg signal using k-means clustering based feature weighting,” Expert Systems with Applications, vol. 37, no. 12, pp. 7922–7928, 2010. [19] S. Charbonnier, L. Zoubek, S. Lesecq, and F. Chapotot, “Self-evaluated automatic classifier as a decision-support tool for sleep/wake staging,” Computers in biology and medicine, vol. 41, no. 6, pp. 380–389, 2011. [20] R. B. Berry, R. Brooks, C. E. Gamaldo, S. M. Harding, C. Marcus, B. V. Vaughn, et al., “The aasm manual for the scoring of sleep and associated events,” Rules, Terminology and Technical Specifications, Darien, Illinois, American Academy of Sleep Medicine, vol. 176, p. 2012, 2012. [21] C.-E. Kuo and S.-F. Liang, “Automatic stage scoring of single-channel sleep eeg based on multiscale permutation entropy,” in 2011 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 448–451, IEEE, 2011. [22] S.-F. Liang, C.-E. Kuo, Y.-H. Hu, and Y.-S. Cheng, “A rule-based automatic sleep staging method,” Journal of neuroscience methods, vol. 205, no. 1, pp. 169–176, 2012. [23] Y.-H. Lee, Y.-S. Chen, and L.-F. Chen, “Automated sleep staging using single eeg channel for rem sleep deprivation,” in 2009 Ninth IEEE International Conference on Bioinformatics and BioEngineering, pp. 439–442, IEEE, 2009. [24] N. Goel, H. Rao, J. Durmer, D. Dinges, I. Philibert, J. Sak, and M. Weinger, “Sleep deprivation and clinical performance,” Sleep, vol. 34, no. 3, pp. 387–391, 2002. 34 [25] F. Christian, K. Muppavarapu, C. Aston, C. Y. Bauer, and V. Doshi, “0630 sleep health of nursing staff in an academic medical center: Results of a survey study,” Sleep, vol. 42, no. Supplement_1, pp. A251–A251, 2019. [26] Y.-A. Choi, S.-J. Park, J.-A. Jun, C.-S. Pyo, K.-H. Cho, H.-S. Lee, and J.-H. Yu, “Deep learning-based stroke disease prediction system using real-time bio signals,” Sensors, vol. 21, no. 13, p. 4269, 2021. [27] I. Hussain, M. A. Hossain, R. Jany, M. A. Bari, M. Uddin, A. R. M. Kamal, Y. Ku, and J.-S. Kim, “Quantitative evaluation of eeg-biomarkers for prediction of sleep stages,” Sensors, vol. 22, no. 8, p. 3079, 2022. [28] R. Boostani, F. Karimzadeh, and M. Nami, “A comparative review on sleep stage classification methods in patients and healthy individuals,” Computer methods and programs in biomedicine, vol. 140, pp. 77–91, 2017. [29] S. Huang, J. Zhu, Y. Chen, T. Wang, and T. Ma, “Analysis and classification of sleep stages based on common frequency pattern from a single-channel eeg signal,” in 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 3711–3714, IEEE, 2020. [30] Z. J. Koles, “The quantitative extraction and topographic mapping of the abnormal components in the clinical eeg,” Electroencephalography and clinical Neurophysiology, vol. 79, no. 6, pp. 440–447, 1991. [31] M. K. Delimayanti, B. Purnama, N. G. Nguyen, M. R. Faisal, K. R. Mahmudah, F. Indriani, M. Kubo, and K. Satou, “Classification of brainwaves for sleep stages by high-dimensional fft features from eeg signals,” Applied Sciences, vol. 10, no. 5, p. 1797, 2020. [32] E. Alickovic and A. Subasi, “Ensemble svm method for automatic sleep stage classification,” IEEE Transactions on Instrumentation and Measurement, vol. 67, no. 6, pp. 1258–1265, 2018. [33] A. B. Rossow, E. O. T. Salles, and K. F. Côco, “Automatic sleep staging using a single-channel eeg modeling by kalman filter and hmm,” in ISSNIP Biosignals and Biorobotics Conference 2011, pp. 1–6, 2011. 35 [34] K. Lweesy, N. Khasawneh, M. Fraiwan, H. Wenz, H. Dickhaus, and L. Fraiwan, “Classification of sleep stages using multi-wavelet time frequency entropy and LDA,” Methods of Information in Medicine, vol. 49, no. 03, pp. 230–237, 2010. [35] S. Santaji and V. Desai, “Analysis of eeg signal to classify sleep stages using machine learning,” Sleep and Vigilance, vol. 4, 12 2020. [36] S. K. Satapathy and D. Loganathan, “A study of human sleep stage classification based on dual channels of eeg signal using machine learning techniques,” SN Computer Science, vol. 2, no. 3, pp. 1–16, 2021. [37] S. Santaji, S. Santaji, and V. Desai, “Automatic sleep stage classification with reduced epoch of eeg,” Evolutionary Intelligence, pp. 1–8, 2021. [38] S. Budhraja, B. S. Bhattacharya, S. Durrant, Z. Doborjeh, M. Doborjeh, and N. Kasabov, “Sleep stage classification using neucube on spinnaker: a preliminary study,” in 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1– 8, IEEE, 2020. [39] A. B. Klok, J. Edin, M. Cesari, A. N. Olesen, P. Jennum, and H. B. Sorensen, “A new fully automated random-forest algorithm for sleep staging,” in 2018 40th annual international conference of the ieee engineering in medicine and biology society (EMBC), pp. 4920–4923, IEEE, 2018. [40] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20, no. 3, pp. 273–297, 1995. [41] S. K. Satapathy, A. K. Bhoi, D. Loganathan, B. Khandelwal, and P. Barsocchi, “Machine learning with ensemble stacking model for automated sleep staging using dualchannel eeg signal,” Biomedical Signal Processing and Control, vol. 69, p. 102898, 2021. [42] B. B. Kemp, A. K. H. Zwinderman, B. Tuk, H. A. C. Kamphuisen, and J. J. L. J. Oberyé, “The sleep-edf database,” 2000. [43] B. Kemp, A. Zwinderman, B. Tuk, H. Kamphuisen, and J. Oberyé, “The sleep-edf database [expanded],” 2018. 36 [44] S. Khalighi, T. Sousa, J. M. Santos, and U. Nunes, “ISRUC-sleep: A comprehensive public dataset for sleep researchers,” Computer Methods and Programs in Biomedicine, vol. 124, pp. 180–192, Feb. 2016. [45] D. Alvarez-Estevez and R. M. Rijsman, “Inter-database validation of a deep learning approach for automatic sleep scoring,” PloS one, vol. 16, no. 8, p. e0256111, 2021. [46] A. Hyvarinen, “Fast and robust fixed-point algorithms for independent component analysis,” IEEE transactions on Neural Networks, vol. 10, no. 3, pp. 626–634, 1999. [47] A. S. Oliveira, B. R. Schlink, W. D. Hairston, P. König, and D. P. Ferris, “Induction and separation of motion artifacts in eeg data using a mobile phantom head device,” Journal of neural engineering, vol. 13, no. 3, p. 036014, 2016. [48] P. Welch, “The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms,” IEEE Transactions on audio and electroacoustics, vol. 15, no. 2, pp. 70–73, 1967. [49] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794, 2016. [50] K. D. Tzimourta, A. Tsilimbaris, K. Tzioukalia, A. T. Tzallas, M. G. Tsipouras, L. G. Astrakas, and N. Giannakeas, “Eeg-based automatic sleep stage classification,” Biomed J, vol. 1, p. 6, 2018. [51] R. K. Tripathy, S. K. Ghosh, P. Gajbhiye, and U. R. Acharya, “Development of automated sleep stage classification system using multivariate projection-based fixed boundary empirical wavelet transform and entropy features extracted from multichannel eeg signals,” Entropy, vol. 22, no. 10, p. 1141, 2020. |
en_US |