dc.identifier.citation |
Aleadelat, W., Ksaibati, K., Wright, C. H. G., & Saha, P. (2018). Evaluation of pavement roughness using an android-based smartphone. Journal of Stomatology, 144(3). https://doi.org/10.1061/JPEODX.0000058 Bills, T., Bryant, R., & Bryant, A. W. (2014). Towards a frugal framework for monitoring road quality. In 2014 17th IEEE International Conference on Intelligent Transportation Systems, ITSC 2014 (pp. 3022–3027). https://doi.org/10.1109/ITSC.2014.6958175 Huda, C., Tolle, H., & Utaminingrum, F. (2020). Road Damaged Analysis (RODA) using Built-in Accelerometer Sensor in Smartphone. Journal of Information Technology and Computer Science, 5(2), 138–150. https://doi.org/10.25126/jitecs.202052168 ITF. (2021). Road Safety in Cities: Street Design and Traffic Management Solutions. International Transport Forum Policy Papers, 99. Janani, L., Sunitha, V., & Mathew, S. (2021). Influence of surface distresses on smartphone-based pavement roughness evaluation. International Journal of Pavement Engineering, 22(13), 1637–1650. https://doi.org/10.1080/10298436.2020.1714045 Kondiparthi, M. (2013). Three-dimensional profiling using a still shot. Journal of Micro/Nanolithography, MEMS, and MOEMS, 13(01), 1. https://doi.org/10.1117/1.jmm.13.1.011106 Li, X., & Goldberg, D. W. (2018). Toward a mobile crowdsensing system for road surface assessment. Computers, Environment and Urban Systems, 69(October 2017), 51–62. https://doi.org/10.1016/j.compenvurbsys.2017.12.005 Mandapalli, J. K., Gorthi, S. S., Gorthi, R. S., & Gorthi, S. (2019). Circular fringe projection method for 3D profiling of high dynamic range objects. VISIGRAPP 2019 - Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, 5(Visigrapp), 849–856. 50 https://doi.org/10.5220/0007389608490856 Rouaud, M. (2013). Probability, statistics and estimation. Propagation of Uncertainties, 191. http://www.incertitudes.fr/book.pdf Srishyla K, D. K. (2021). IRJET- Road Pavement Distress Identification and Classification using Deep Learning. Irjet, 8(6), 3384–3390. Staniek, M. (2021). Road pavement condition diagnostics using smartphone-based data crowdsourcing in smart cities. Journal of Traffic and Transportation Engineering (English Edition), 8(4), 554–567. https://doi.org/10.1016/j.jtte.2020.09.004 Thiandee, P., Witchayangkoon, B., Sirimontree, S., & Lertworawanich, P. (2019). AN EXPERIMENT ON MEASUREMENT OF PAVEMENT ROUGHNESS VIA ANDROID-BASED SMARTPHONES. https://doi.org/10.14456/ITJEMAST.2019.114 Uddin Mohammed, J., Iqbal Faheem, M., Minhajuddin Aquil, M., Scholar, P., & Principal, V. (2015). Pavement Performance Measures Using Android-Based Smart Phone Application. In Research & Indu. Appls. (IJERIA (Vol. 8, Issue III). Uzaktan, T., Dergisi, C. B. S., Kullanarak, İ. H. A., & Bozukluk, Y. (2020). Turkish Journal of Remote Sensing and GIS. 1(March), 61–77. Yeganeh, S. F., Mahmoudzadeh, A., Azizpour, M. A., & Golroo, A. (2019). Validation of smartphone based pavement roughness measures. 1–9. http://arxiv.org/abs/1902.10699 |
en_US |