Design & Investigation of Different Highly Sensitive PCF Sensors Based on Surface Plasmon Resonance

Show simple item record

dc.contributor.author Rafid, Rahbar Al
dc.contributor.author Rashid, Shahriar
dc.contributor.author Zerin, Nausheen
dc.date.accessioned 2022-12-26T05:03:12Z
dc.date.available 2022-12-26T05:03:12Z
dc.date.issued 2022-05-30
dc.identifier.citation [1] S. Chowdhury et al., “Porous shaped photonic crystal fiber with strong confinement field in sensing applications: Design and analysis,” Sens. Bio-Sensing Res., vol. 13, pp. 63–69, 2017, doi: 10.1016/j.sbsr.2017.03.002. [2] S. Sen, S. Chowdhury, K. Ahmed, and S. Asaduzzaman, “Design of a porous cored hexagonal photonic crystal fiber based optical sensor with high relative sensitivity for lower operating wavelength,” Photonic Sensors, vol. 7, no. 1, pp. 55–65, 2017, doi: 10.1007/s13320-016-0384-y. [3] “Fiber optic sensing: The past, present, and exciting future - Sensuron.” https://www.sensuron.com/press/fiber-optic-sensing-the-past-present-and-exciting-future/ (accessed May 13, 2022). [4] R. Stoltenburg, C. Reinemann, and B. Strehlitz, “SELEX—A (r)evolutionary method to generate high-affinity nucleic acid ligands,” Biomol. Eng., vol. 24, no. 4, pp. 381–403, Oct. 2007, doi: 10.1016/j.bioeng.2007.06.001. [5] Y. Saylan and A. Denizli, “Chapter 1 - Fundamentals and Applications of Molecularly Imprinted Systems,” in Molecular Imprinting for Nanosensors and Other Sensing Applications, A. Denizli, Ed. Elsevier, 2021, pp. 1–17. [6] E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V Oliver, “Numerical analysis of a photonic crystal fiber for biosensing applications,” IEEE J. Quantum Electron., vol. 48, no. 11, pp. 1403–1410, 2012, doi: 10.1109/JQE.2012.2213803. [7] J. Ortega-Mendoza, A. Padilla-Vivanco, C. Toxqui-Quitl, P. Zaca-Morán, D. VillegasHernández, and F. Chávez, “Optical Fiber Sensor Based on Localized Surface Plasmon Resonance Using Silver Nanoparticles Photodeposited on the Optical Fiber End,” Sensors, vol. 14, no. 10, pp. 18701–18710, Oct. 2014, doi: 10.3390/s141018701. [8] R. Otupiri, E. K. Akowuah, S. Haxha, H. Ademgil, F. AbdelMalek, and A. Aggoun, “A 74 Novel Birefrigent Photonic Crystal Fiber Surface Plasmon Resonance Biosensor,” IEEE Photonics J., vol. 6, no. 4, pp. 1–11, Aug. 2014, doi: 10.1109/JPHOT.2014.2335716. [9] B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sensors and Actuators, vol. 4, pp. 299–304, Jan. 1983, doi: 10.1016/0250-6874(83)85036-7. [10] E. Kretschmann and H. Raether, “Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light,” Zeitschrift für Naturforsch. A, vol. 23, no. 12, pp. 2135– 2136, Dec. 1968, doi: 10.1515/zna-1968-1247. [11] M. R. Islam et al., “Trigonal cluster-based ultra-sensitive surface plasmon resonance sensor for multipurpose sensing,” Sens. Bio-Sensing Res., vol. 35, p. 100477, 2022, doi: https://doi.org/10.1016/j.sbsr.2022.100477. [12] S. I. Azzam, M. F. O. Hameed, R. E. A. Shehata, A. M. Heikal, and S. S. A. Obayya, “Multichannel photonic crystal fiber surface plasmon resonance based sensor,” Opt. Quantum Electron., vol. 48, no. 2, p. 142, Feb. 2016, doi: 10.1007/s11082-016-0414-4. [13] M. R. Islam, M. F. Kabir, K. M. A. Talha, and M. S. Islam, “A novel hollow core terahertz refractometric sensor,” Sens. Bio-Sensing Res., vol. 25, p. 100295, Sep. 2019, doi: 10.1016/j.sbsr.2019.100295. [14] F. A. Mou, M. M. Rahman, M. R. Islam, and M. I. H. Bhuiyan, “Development of a photonic crystal fiber for THz wave guidance and environmental pollutants detection,” Sens. Bio-Sensing Res., vol. 29, p. 100346, Aug. 2020, doi: 10.1016/j.sbsr.2020.100346. [15] M. S. Islam, M. R. Islam, J. Sultana, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Exposed-core localized surface plasmon resonance biosensor,” J. Opt. Soc. Am. B, vol. 36, no. 8, p. 2306, Aug. 2019, doi: 10.1364/josab.36.002306. [16] J. N. Dash and R. Jha, “SPR Biosensor Based on Polymer PCF Coated With Conducting Metal Oxide,” IEEE Photonics Technol. Lett., vol. 26, no. 6, pp. 595–598, Mar. 2014, doi: 10.1109/LPT.2014.2301153. [17] A. A. Rifat, R. Ahmed, G. A. Mahdiraji, and F. R. M. Adikan, “Highly Sensitive DShaped Photonic Crystal Fiber-Based Plasmonic Biosensor in Visible to Near-IR,” IEEE 75 Sens. J., vol. 17, no. 9, pp. 2776–2783, May 2017, doi: 10.1109/JSEN.2017.2677473. [18] S. Sharmin, A. Bosu, and S. Akter, “A Simple Gold-Coated Photonic Crystal Fiber Based Plasmonic Biosensor,” in 2018 International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE), Nov. 2018, pp. 1–4, doi: 10.1109/ICAEEE.2018.8643003. [19] J. C. Knight, “Photonic crystal fibres,” Nature, vol. 424, no. 6950, pp. 847–851, 2003, doi: 10.1038/nature01940. [20] T. A. Birks, P. J. Roberts, P. S. T. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett., vol. 31, no. 22, pp. 1941–1943, Oct. 1995, doi: 10.1049/EL:19951306. [21] J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett., vol. 21, no. 19, pp. 1547–1549, Oct. 1996, doi: 10.1364/OL.21.001547. [22] “Fundamentals of Optical Fibers, 2nd Edition - NASA/ADS.” https://ui.adsabs.harvard.edu/abs/2004fof..book.....B/abstract (accessed May 13, 2022). [23] K. Kaneshima, Y. Namihira, N. Zou, H. Higa, and Y. Nagata, “Numerical Investigation of Octagonal Photonic Crystal Fibers with Strong Confinement Field,” IEICE Trans., vol. 89–C, pp. 830–837, 2006, doi: 10.1093/ietele/e89-c.6.830. [24] J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic Band Gap Guidance in Optical Fibers,” Science (80-. )., vol. 282, no. 5393, pp. 1476–1478, 1998, doi: 10.1126/science.282.5393.1476. [25] K. Tajima, K. Kurokawa, K. Nakajima, and I. Sankawa, “Photonic crystal fiber,” NTT Tech. Rev., vol. 3, no. 8, pp. 57–61, 2005, doi: 10.1126/science.1079280. [26] A. M. Cubillas et al., “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev., vol. 42, no. 22, pp. 8629–8648, 2013, doi: 10.1039/c3cs60128e. [27] J. Lægsgaard, N. A. Mortensen, and A. Bjarklev, “Mode areas and field-energy distribution in honeycomb photonic bandgap fibers,” J. Opt. Soc. Am. B, vol. 20, no. 10, p. 76 2037, 2003, doi: 10.1364/josab.20.002037. [28] P. S. Maji and P. R. Chaudhuri, “Geometrical parameters dependence towards ultra-flat dispersion square-lattice PCF using tunable liquid infiltration,” WRAP 2013 - Work. Recent Adv. Photonics, vol. 2, no. D, pp. 2–3, 2014, doi: 10.1109/WRAP.2013.6917653. [29] R. Islam, M. S. Habib, G. K. M. Hasanuzzaman, S. Rana, M. A. Sadath, and C. Markos, “A Novel Low-Loss Diamond-Core Porous Fiber for Polarization Maintaining Terahertz Transmission,” IEEE Photonics Technol. Lett., vol. 28, no. 14, pp. 1537–1540, 2016, doi: 10.1109/LPT.2016.2550205. [30] K. Ahmed and M. Morshed, “Design and numerical analysis of microstructured-core octagonal photonic crystal fiber for sensing applications,” Sens. Bio-Sensing Res., vol. 7, pp. 1–6, Mar. 2016, doi: 10.1016/j.sbsr.2015.10.005. [31] S. Li, “Equiangular spiral photonic crystal fiber for code synchronization in all-optical analog-to-digital conversion based on lumped time delay compensation scheme,” Optik (Stuttg)., vol. 127, no. 11, pp. 4693–4697, 2016, doi: 10.1016/j.ijleo.2016.02.017. [32] A. Cerqueira S., Jr., C. M. B. Cordeiro, F. Biancalana, P. J. Roberts, H. E. HernandezFigueroa, and C. H. B. Cruz, “Nonlinear interaction between two different photonic bandgaps of a hybrid photonic crystal fiber,” Opt. Lett., vol. 33, no. 18, p. 2080, 2008, doi: 10.1364/ol.33.002080. [33] J. Canning, E. Buckley, K. Lyttikainen, and T. Ryan, “Wavelength dependent leakage in a Fresnel-based air-silica structured optical fibre,” Opt. Commun., vol. 205, no. 1–3, pp. 95– 99, 2002, doi: 10.1016/S0030-4018(02)01305-6. [34] X. Tao, Wearable photonics based on integrative polymeric photonic fibres. Woodhead Publishing Limited, 2005. [35] Y. Wang, “Review of long period fiber gratings written by CO2 laser,” J. Appl. Phys., vol. 108, no. 8, 2010, doi: 10.1063/1.3493111. [36] H. F. Fakhruldeen and A. Z. Ghazi Zahid, “An Overview of Photonic Crystal Fiber (PCF),” no. April 2019, 2019, [Online]. Available: www.tnsroindia.org.in. 77 [37] V. V. R. K. Kumar et al., “Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation,” Opt. Express, vol. 10, no. 25, pp. 1520–1525, Dec. 2002, doi: 10.1364/OE.10.001520. [38] D. M. Chow, S. R. Sandoghchi, and F. R. M. Adikan, “Fabrication of photonic crystal fibers,” ICP 2012 - 3rd Int. Conf. Photonics 2012, Proc., no. October, pp. 227–230, 2012, doi: 10.1109/ICP.2012.6379830. [39] J.-C. Kim, H.-K. Kim, U.-C. Paek, B.-H. Lee, and J.-B. Eom, “The Fabrication of a Photonic Crystal Fiber and Measurement of its Properties,” J. Opt. Soc. Korea, vol. 7, no. 2, pp. 79–83, Jun. 2003, doi: 10.3807/JOSK.2003.7.2.079. [40] “Max Planck Institute for the Science of Light.” https://mpl.mpg.de/research-atmpl/technology-development-service-units/tdsu-fibre-fabrication-glassstudio/research/fibre-fabrication/stack-and-draw/]. (accessed May 13, 2022). [41] S. Zeng, D. Baillargeat, H. P. Ho, and K. T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev., vol. 43, no. 10, pp. 3426–3452, 2014, doi: 10.1039/c3cs60479a. [42] J. B. González-Díaz et al., “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small, vol. 4, no. 2, pp. 202–205, 2008, doi: 10.1002/smll.200700594. [43] G. X. Du, T. Mori, M. Suzuki, S. Saito, H. Fukuda, and M. Takahashi, “Evidence of localized surface plasmon enhanced magneto-optical effect in nanodisk array,” Appl. Phys. Lett., vol. 96, no. 8, pp. 2008–2011, 2010, doi: 10.1063/1.3334726. [44] S. Zeng et al., “Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement,” Sensors Actuators, B Chem., vol. 176, pp. 1128–1133, 2013, doi: 10.1016/j.snb.2012.09.073. [45] Y. Yanase et al., “Surface plasmon resonance for cell-based clinical diagnosis,” Sensors (Switzerland), vol. 14, no. 3, pp. 4948–4959, 2014, doi: 10.3390/s140304948. [46] Surface plasmon wave, vol. 266. 2016. 78 [47] “Nanoplasmonics and Three-Dimensional Plasmonic Metamaterials | NIST.” https://www.nist.gov/programs-projects/nanoplasmonics-and-three-dimensionalplasmonic-metamaterials (accessed May 13, 2022). [48] E. Descrovi, V. Paeder, L. Vaccaro, and H.-P. Herzig, “A virtual optical probe based on localized Surface Plasmon Polaritons,” Opt. Express, vol. 13, no. 18, p. 7017, 2005, doi: 10.1364/opex.13.007017. [49] K. Y. Bliokh, F. J. Rodríguez-Fortuño, A. Y. Bekshaev, Y. S. Kivshar, and F. Nori, “Electric-current-induced unidirectional propagation of surface plasmon-polaritons,” Opt. Lett., vol. 43, no. 5, p. 963, 2018, doi: 10.1364/ol.43.000963. [50] M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett., vol. 6, no. 6, pp. 1113–1115, 2006, doi: 10.1021/nl060941v. [51] “Surface plasmon polariton - Wikipedia.” https://en.wikipedia.org/wiki/Surface_plasmon_polariton (accessed May 13, 2022). [52] “Evanescent field - Wikipedia.” https://en.wikipedia.org/wiki/Evanescent_field (accessed May 13, 2022). [53] X. Yu et al., “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt., vol. 12, no. 1, p. 15005, Jan. 2010, doi: 10.1088/2040-8978/12/1/015005. [54] H. Minh Hiep et al., “A localized surface plasmon resonance based immunosensor for the detection of casein in milk,” Sci. Technol. Adv. Mater., vol. 8, no. 4, pp. 331–338, 2007, doi: 10.1016/j.stam.2006.12.010. [55] A. Sinibaldi et al., “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sensors Actuators, B Chem., vol. 174, pp. 292–298, 2012, doi: 10.1016/j.snb.2012.07.015. [56] S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys., vol. 101, no. 9, 2007, doi: 10.1063/1.2734885. [57] K. Locharoenrat, H. Sano, and G. Mizutani, “Phenomenological studies of optical 79 properties of Cu nanowires,” Sci. Technol. Adv. Mater., vol. 8, no. 4, pp. 277–281, 2007, doi: 10.1016/j.stam.2007.02.001. [58] W. Knoll, “Interfaces and thin films as seen by bound electromagnetic waves,” Annu. Rev. Phys. Chem., vol. 49, no. 1, pp. 569–638, 1998, doi: 10.1146/annurev.physchem.49.1.569. [59] D. J. J. Hu and H. P. Ho, “Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications,” Adv. Opt. Photonics, vol. 9, no. 2, p. 257, 2017, doi: 10.1364/aop.9.000257. [60] K. Bhattarai et al., “A Large-Area, Mushroom-Capped Plasmonic Perfect Absorber: Refractive Index Sensing and Fabry–Perot Cavity Mechanism,” Adv. Opt. Mater., vol. 3, no. 12, pp. 1779–1786, 2015, doi: https://doi.org/10.1002/adom.201500231. [61] M. R. Momota and M. R. Hasan, “Hollow-core silver coated photonic crystal fiber plasmonic sensor,” Opt. Mater. (Amst)., vol. 76, pp. 287–294, Feb. 2018, doi: 10.1016/j.optmat.2017.12.049. [62] Y. Zhao, Z. Q. Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sensors Actuators, B Chem., vol. 202, pp. 557–567, 2014, doi: 10.1016/j.snb.2014.05.127. [63] M. S. Islam et al., “A Hi-Bi Ultra-Sensitive Surface Plasmon Resonance Fiber Sensor,” IEEE Access, vol. 7, no. June, pp. 79085–79094, 2019, doi: 10.1109/ACCESS.2019.2922663. [64] N. Luan, R. Wang, W. Lv, and J. Yao, “Surface plasmon resonance sensor based on Dshaped microstructured optical fiber with hollow core,” Opt. Express, vol. 23, no. 7, p. 8576, Apr. 2015, doi: 10.1364/OE.23.008576. [65] X. Chen, L. Xia, and C. Li, “Surface plasmon resonance sensor based on a novel Dshaped photonic crystal fiber for low refractive index detection,” IEEE Photonics J., vol. 10, no. 1, 2018, doi: 10.1109/JPHOT.2018.2790424. [66] E. Haque, M. A. Hossain, F. Ahmed, and Y. Namihira, “Surface Plasmon Resonance Sensor Based on Modified D-Shaped Photonic Crystal Fiber for Wider Range of Refractive Index Detection,” IEEE Sens. J., vol. 18, no. 20, pp. 8287–8293, 2018, doi: 80 10.1109/JSEN.2018.2865514. [67] E. Haque, A. Al Noman, M. A. Hossain, N. Hoang Hai, Y. Namihira, and F. Ahmed, “Highly Sensitive D-Shaped Plasmonic Refractive Index Sensor for a Broad Range of Refractive Index Detection,” IEEE Photonics J., vol. 13, no. 1, pp. 1–11, Feb. 2021, doi: 10.1109/JPHOT.2021.3055234. [68] M. F. H. Arif, M. M. Hossain, N. Islam, and S. M. Khaled, “A nonlinear photonic crystal fiber for liquid sensing application with high birefringence and low confinement loss,” Sens. Bio-Sensing Res., vol. 22, no. November 2018, p. 100252, 2019, doi: 10.1016/j.sbsr.2018.100252. [69] S. Sen, M. Abdullah-Al-Shafi, and M. A. Kabir, “Hexagonal photonic crystal Fiber (HPCF) based optical sensor with high relative sensitivity and low confinement loss for terahertz (THz) regime,” Sens. Bio-Sensing Res., vol. 30, no. September, p. 100377, 2020, doi: 10.1016/j.sbsr.2020.100377. [70] A. A. Rifat, G. A. Mahdiraji, Y. G. Shee, M. J. Shawon, and F. R. M. Adikan, “A Novel Photonic Crystal Fiber Biosensor Using Surface Plasmon Resonance,” Procedia Eng., vol. 140, pp. 1–7, 2016, doi: 10.1016/j.proeng.2015.08.1107. [71] M. Mahabubur Rahman, M. Aslam Molla, A. Kumar Paul, M. A. Based, M. Masud Rana, and M. S. Anower, “Numerical investigation of a highly sensitive plasmonic refractive index sensor utilizing hexagonal lattice of photonic crystal fiber,” Results Phys., vol. 18, p. 103313, 2020, doi: 10.1016/j.rinp.2020.103313. [72] T. Ahmed, A. K. Paul, M. S. Anower, and S. M. A. Razzak, “Surface plasmon resonance biosensor based on hexagonal lattice dual-core photonic crystal fiber,” Appl. Opt., vol. 58, no. 31, pp. 8416–8422, Nov. 2019, doi: 10.1364/AO.58.008416. [73] H. Wang, X. Yan, S. Li, G. An, and X. Zhang, “High sensitivity refractive index sensor based on dual-core photonic crystal fiber with hexagonal lattice,” Sensors (Switzerland), vol. 16, no. 10, pp. 1–10, 2016, doi: 10.3390/s16101655. [74] S. M. Abu Sufian Sunny, T. Ahmed, A. Anzum, and A. K. Paul, “Performance Analysis of a PCF SPR Based Highly Sensitive Biosensor,” BECITHCON 2019 - 2019 IEEE Int. 81 Conf. Biomed. Eng. Comput. Inf. Technol. Heal., no. Cvd, pp. 7–10, 2019, doi: 10.1109/BECITHCON48839.2019.9063192. [75] M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, and S. Ali, “A highly sensitive gold-coated photonic crystal fiber biosensor based on surface plasmon resonance,” Photonics, vol. 4, no. 1, Mar. 2017, doi: 10.3390/photonics4010018. [76] M. A. Khalek, S. Chakma, B. K. Paul, and K. Ahmed, “Dataset of surface plasmon resonance based on photonic crystal fiber for chemical sensing applications,” Data Br., vol. 19, pp. 76–81, 2018, doi: 10.1016/j.dib.2018.05.026. [77] Q. M. Kamrunnahar, J. R. Mou, and M. Momtaj, “Dual-core gold coated photonic crystal fiber plasmonic sensor: Design and analysis,” Results Phys., vol. 18, no. June, p. 103319, 2020, doi: 10.1016/j.rinp.2020.103319. [78] M. Hossain, S. M. A. S. Sunny, and T. Ahmed, “Design and Analysis of Circular Lattice PCF Biosensor -Based on Surface Plasmon Resonance,” in 2021 3rd International Conference on Sustainable Technologies for Industry 4.0 (STI), 2021, pp. 1–4, doi: 10.1109/STI53101.2021.9732610. [79] M. S. Islam, J. Sultana, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “A Gold Coated Plasmonic Sensor for Biomedical and Biochemical Analyte Detection,” in 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Sep. 2018, pp. 1–2, doi: 10.1109/IRMMW-THz.2018.8510018. [80] S. Chu, K. Nakkeeran, A. M. Abobaker, S. S. Aphale, P. R. Babu, and K. Senthilnathan, “Design and analysis of surface-plasmon-resonance-based photonic quasi-crystal fiber biosensor for high-refractive-index liquid analytes,” IEEE J. Sel. Top. Quantum Electron., vol. 25, no. 2, pp. 1–8, Mar. 2019, doi: 10.1109/JSTQE.2018.2873481. [81] M. N. Hossen, M. Ferdous, M. Abdul Khalek, S. Chakma, B. K. Paul, and K. Ahmed, “Design and analysis of biosensor based on surface plasmon resonance,” Sens. BioSensing Res., vol. 21, pp. 1–6, Nov. 2018, doi: 10.1016/j.sbsr.2018.08.003. [82] M. R. Hasan et al., “Spiral photonic crystal fiber-based dual-polarized surface plasmon resonance biosensor,” IEEE Sens. J., vol. 18, no. 1, pp. 133–140, Jan. 2018, doi: 82 10.1109/JSEN.2017.2769720. [83] P. R. West, S. Ishii, G. Naik, N. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for Better Plasmonic Materials.” [84] M. Alsawafta, M. Wahbeh, and V. Van Truong, “Plasmonic modes and optical properties of gold and silver ellipsoidal nanoparticles by the discrete dipole approximation,” J. Nanomater., vol. 2012, 2012, doi: 10.1155/2012/457968. [85] G. V Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater., vol. 25, no. 24, pp. 3264–3294, Jun. 2013, doi: 10.1002/adma.201205076. [86] M. K. Hamza et al., “Tunable mid IR plasmon in GZO nanocrystals,” Nanoscale, vol. 7, no. 28, pp. 12030–12037, 2015, doi: 10.1039/C5NR03378K. [87] “Five reasons why glass is best for medical devices | SCHOTT.” https://www.schott.com/en-gb/products/p/puravis/content/five-reasons-why-glass-is-bestfor-medical-devices (accessed May 13, 2022). [88] F. Haider, R. A. Aoni, R. Ahmed, G. A. Mahdiraji, M. F. Azman, and F. R. M. Adikan, “Mode-multiplex plasmonic sensor for multi-analyte detection,” Opt. Lett., vol. 45, no. 14, pp. 3945–3948, Jul. 2020, doi: 10.1364/OL.396340. [89] A. M. Shrivastav, U. Cvelbar, and I. Abdulhalim, “A comprehensive review on plasmonic-based biosensors used in viral diagnostics,” Commun. Biol., vol. 4, no. 1, pp. 1–12, 2021, doi: 10.1038/s42003-020-01615-8. [90] M. R. Islam et al., “Design and Analysis of a Biochemical Sensor Based on Surface Plasmon Resonance with Ultra-high Sensitivity,” Plasmonics, Jan. 2021, doi: 10.1007/s11468-020-01355-9. [91] M. Rakibul Islam, M. M. I. Khan, F. Mehjabin, J. Alam Chowdhury, and M. Islam, “Design of a fabrication friendly & highly sensitive surface plasmon resonance-based photonic crystal fiber biosensor,” Results Phys., vol. 19, p. 103501, Dec. 2020, doi: 10.1016/j.rinp.2020.103501. 83 [92] M. Aminul Islam, M. Rakibul Islam, M. Moinul Islam Khan, J. A. Chowdhury, F. Mehjabin, and M. Islam, “Highly Birefringent Slotted Core Photonic Crystal Fiber for THz Wave Propagation,” Phys. Wave Phenom., vol. 28, no. 1, pp. 58–67, Jan. 2020, doi: 10.3103/S1541308X20010021. [93] M. R. Islam et al., “Design and analysis of birefringent SPR based PCF biosensor with ultra-high sensitivity and low loss,” Optik (Stuttg)., vol. 221, p. 165311, Nov. 2020, doi: 10.1016/j.ijleo.2020.165311. [94] X. Li, S. Li, X. Yan, D. Sun, Z. Liu, and T. Cheng, “High Sensitivity Photonic Crystal Fiber Refractive Index Sensor with Gold Coated Externally Based on Surface Plasmon Resonance,” 2018, doi: 10.3390/mi9120640. [95] C. Liu et al., “Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing,” Opt. Express, vol. 26, no. 7, p. 9039, Apr. 2018, doi: 10.1364/OE.26.009039. [96] M. Al Mahfuz, M. A. Hossain, E. Haque, N. H. Hai, Y. Namihira, and F. Ahmed, “DualCore Photonic Crystal Fiber-Based Plasmonic RI Sensor in the Visible to Near-IR Operating Band,” IEEE Sens. J., vol. 20, no. 14, pp. 7692–7700, Mar. 2020, doi: 10.1109/jsen.2020.2980327. [97] M. R. Islam et al., “Design and numerical analysis of a gold-coated photonic crystal fiber based refractive index sensor,” Opt. Quantum Electron., vol. 53, no. 2, p. 112, Feb. 2021, doi: 10.1007/s11082-021-02748-8. [98] E. Haque, M. Anwar Hossain, Y. Namihira, and F. Ahmed, “Microchannel-based plasmonic refractive index sensor for low refractive index detection,” Appl. Opt., vol. 58, no. 6, p. 1547, Feb. 2019, doi: 10.1364/AO.58.001547. [99] M. S. Islam et al., “Localized surface plasmon resonance biosensor: an improved technique for SERS response intensification,” Opt. Lett., vol. 44, no. 5, p. 1134, Mar. 2019, doi: 10.1364/ol.44.001134. [100] M. R. Islam et al., “Surface plasmon resonance based highly sensitive gold coated PCF biosensor,” Appl. Phys. A, vol. 127, no. 2, p. 118, Feb. 2021, doi: 10.1007/s00339-020- 84 04162-5. [101] Y. Yu et al., “Some features of the photonic crystal fiber temperature sensor with liquid ethanol filling,” Opt. Express, vol. 18, no. 15, pp. 15383–15388, Jul. 2010, doi: 10.1364/OE.18.015383. [102] S. Liu, S. Cao, Z. Zhang, Y. Wang, C. Liao, and Y. Wang, “Temperature Sensor Based on Side-Polished Fiber SPR Device Coated with Polymer,” Sensors, vol. 19, no. 19, p. 4063, Sep. 2019, doi: 10.3390/s19194063. [103] M. R. Islam et al., “Design and analysis of a QC-SPR-PCF sensor for multipurpose sensing with supremely high FOM,” Appl. Nanosci., vol. 12, no. 1, pp. 29–45, 2022, doi: 10.1007/s13204-021-02150-6. [104] X. Zhou et al., “High-Sensitivity SPR Temperature Sensor Based on Hollow-Core Fiber,” IEEE Trans. Instrum. Meas., vol. 69, no. 10, pp. 8494–8499, 2020, doi: 10.1109/TIM.2020.2992828. [105] Y. Wang, Q. Huang, W. Zhu, M. Yang, and E. Lewis, “Novel optical fiber SPR temperature sensor based on MMF-PCF-MMF structure and gold-PDMS film,” Opt. Express, vol. 26, no. 2, p. 1910, 2018, doi: 10.1364/oe.26.001910. [106] M. A. Mollah, S. M. R. Islam, M. Yousufali, L. F. Abdulrazak, M. B. Hossain, and I. S. Amiri, “Plasmonic temperature sensor using D-shaped photonic crystal fiber,” Results Phys., vol. 16, p. 102966, Mar. 2020, doi: 10.1016/j.rinp.2020.102966. [107] J. N. Dash and R. Das, “SPR based magnetic-field sensing in microchannelled PCF: a numerical approach,” J. Opt., vol. 20, no. 11, p. 115001, Nov. 2018, doi: 10.1088/2040- 8986/aae119. [108] Y. Zhao, X. Liu, R.-Q. Lv, Y.-N. Zhang, and Q. Wang, “Review on Optical Fiber Sensors Based on the Refractive Index Tunability of Ferrofluid,” J. Light. Technol., vol. 35, no. 16, pp. 3406–3412, Aug. 2017, doi: 10.1109/JLT.2016.2573288. [109] H. Huang et al., “A Highly Magnetic Field Sensitive Photonic Crystal Fiber Based on Surface Plasmon Resonance,” Sensors, vol. 20, no. 18, p. 5193, Sep. 2020, doi: 10.3390/s20185193. 85 [110] R. Zhang et al., “Mach-Zehnder Interferometer Cascaded With FBG for Simultaneous Measurement of Magnetic Field and Temperature,” IEEE Sens. J., vol. 19, no. 11, pp. 4079–4083, 2019, doi: 10.1109/JSEN.2019.2899672. [111] J. Wang et al., “Magnetic field and temperature dual-parameter sensor based on magnetic fluid materials filled photonic crystal fiber,” Opt. Express, vol. 28, no. 2, pp. 1456–1471, Jan. 2020, doi: 10.1364/OE.377116. [112] X. Mo, J. Lv, Q. Liu, X. Jiang, and G. Si, “A Magnetic Field SPR Sensor Based on Temperature Self-Reference,” Sensors, vol. 21, no. 18, 2021, doi: 10.3390/s21186130. [113] S. W. Sijun Weng, L. P. Li Pei, J. W. Jianshuai Wang, T. N. Tigang Ning, and and J. L. and Jing Li, “High sensitivity side-hole fiber magnetic field sensor based on surface plasmon resonance,” Chinese Opt. Lett., vol. 14, no. 11, pp. 110603–110606, 2016, doi: 10.3788/COL201614.110603. [114] G. A. Mahdiraji et al., “Challenges and solutions in fabrication of silica-based photonic crystal fibers: An experimental study,” Fiber Integr. Opt., vol. 33, no. 1–2, pp. 85–104, 2014, doi: 10.1080/01468030.2013.879680. [115] G. S. Wiederhecker et al., “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics, vol. 1, no. 2, pp. 115–118, 2007, doi: 10.1038/nphoton.2006.81. [116] B. Li, T. Cheng, J. Chen, and X. Yan, “Graphene-Enhanced Surface Plasmon Resonance Liquid Refractive Index Sensor Based on Photonic Crystal Fiber,” Sensors, vol. 19, no. 17, 2019, doi: 10.3390/s19173666. [117] E. Haque, A. Al Noman, M. A. Hossain, N. Hoang Hai, Y. Namihira, and F. Ahmed, “Highly sensitive D-Shaped plasmonic refractive index sensor for a broad range of refractive index detection,” IEEE Photonics J., vol. 13, no. 1, 2021, doi: 10.1109/JPHOT.2021.3055234. [118] E. Delory and J. Pearlman, Eds., “Chapter 3 - Ocean In Situ Sensors: New Developments in Biological Sensors,” in Challenges and Innovations in Ocean In Situ Sensors, Elsevier, 2019, pp. 81–116. 86 [119] H.-W. Yu, M. J. Halonen, and I. L. Pepper, “Chapter 12 - Immunological Methods,” in Environmental Microbiology (Third Edition), Third Edit., I. L. Pepper, C. P. Gerba, and T. J. Gentry, Eds. San Diego: Academic Press, 2015, pp. 245–269. [120] J. Dostálek and W. Knoll, “2.26 - Plasmonics,” in Polymer Science: A Comprehensive Reference, K. Matyjaszewski and M. Möller, Eds. Amsterdam: Elsevier, 2012, pp. 647– 659. [121] H. Yoo, J. Shin, J. Sim, H. Cho, and S. Hong, “Biosensors and Bioelectronics Reusable surface plasmon resonance biosensor chip for the detection of H1N1 influenza virus,” Biosens. Bioelectron., vol. 168, no. March, p. 112561, 2020, doi: 10.1016/j.bios.2020.112561. [122] K. Zhang and M. Rochette, “Saturable absorption using nonlinear multimode interference in chalcogenide fiber,” in OSA Advanced Photonics Congress (AP) 2020 (IPR, NP, NOMA, Networks, PVLED, PSC, SPPCom, SOF), 2020, p. NpM3E.3, doi: 10.1364/NP.2020.NpM3E.3. en_US
dc.identifier.uri http://hdl.handle.net/123456789/1620
dc.description Supervised by Prof. Dr. Mohammad Rakibul Islam Supervisor and Professor, Head of the Department, Department of Electrical and Electronic Engineering, Islamic University of Technology, Boardbazar, Gazipur-1704. This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Electrical and Electronic Engineering, 2022. en_US
dc.description.abstract Many Researchers have proposed many designs on SPR based PCF sensors. This field is outgrowing very rapidly due to its label free, real time monitoring detection technique and all other applications. So, sensors with better performance are discovered and on the way to be discovered, The sensitivity and accuracy are quite high in SPR sensors and it has fabrication friendly size. But in case of higher sensitivity, complex structures and fabrication complications arrive. That is why designing a PCF sensor includes some goals & others need to be compromised. Studying many PCF sensors, our design was proposed for an improved sensing performance and detecting magnetic and temperature changes. Also, the target was so that this design can be practically implemented. We proposed a circular lattice structure with gold coating. It was surrounded with a thin PML layer & stack and draw method was adapted for easy fabrication. We optimized various parameters whichever gave the best results. In all cases we used COMSOL Multiphysics 5.3a and Matlab for our researched work. Amplitude Sensitivity (AS) of 7223.62 RIU-1 and wavelength sensitivity (WS) of 28500 RIU-1 was noted. The Sensor resolutions are 1.38×10-6 and 3.50×10-6 RIU for amplitude and wavelength respectively and the sensor has a FOM of 914 with an analyte sensing range from Refractive indices 1.33 to 1.42. Aside from this, the sensor can perform as a temperature sensor with a maximum temperature sensitivity of 1.25 nm/ °C and also as a magnetic field sensor with a maximum sensitivity of 0.16 nm/Oe. Thus, denoting the high sensing capabilities, this proposed sensor can prevail as a potential asset in the bio-detection field. en_US
dc.language.iso en en_US
dc.publisher Department of Electrical and Electronic Engineering(EEE), Islamic University of Technology(IUT), en_US
dc.subject Photonics, Plasmonics, Optical Technology, Optics, Surface Plasmon Resonance, Photonic Crystal Fiber en_US
dc.title Design & Investigation of Different Highly Sensitive PCF Sensors Based on Surface Plasmon Resonance en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics