PCF-Mach Zehnder Interferometer Sensor employing the splitting of the surface plasmon mode

Show simple item record

dc.contributor.author Naser, Ahmed Mujtaba Al
dc.contributor.author Jaba, Fatema Zerin
dc.contributor.author Anzum, Fariha
dc.date.accessioned 2022-12-26T06:15:14Z
dc.date.available 2022-12-26T06:15:14Z
dc.date.issued 2022-05-30
dc.identifier.citation [1] J. Homola, “Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species,” Chem. Rev., vol. 108, no. 2, pp. 462–493, Feb. 2008, doi: 10.1021/cr068107d. [2] J. Homola, “Present and future of surface plasmon resonance biosensors.,” Anal. Bioanal. Chem., vol. 377, no. 3, pp. 528–539, Oct. 2003, doi: 10.1007/s00216-003- 2101-0. [3] B. D. Gupta and R. K. Verma, “Surface Plasmon Resonance-Based Fiber Optic Sensors: Principle, Probe Designs, and Some Applications,” J. Sensors, vol. 2009, p. 979761, 2009, doi: 10.1155/2009/979761. [4] R. Otupiri, E. K. Akowuah, S. Haxha, H. Ademgil, F. AbdelMalek, and A. Aggoun, “A Novel Birefrigent Photonic Crystal Fiber Surface Plasmon Resonance Biosensor,” IEEE Photonics J., vol. 6, no. 4, pp. 1–11, 2014, doi: 10.1109/JPHOT.2014.2335716. [5] J. G. Ortega-Mendoza, A. Padilla-Vivanco, C. Toxqui-Quitl, P. Zaca-Morán, D. Villegas-Hernández, and F. Chávez, “Optical fiber sensor based on localized surface plasmon resonance using silver nanoparticles photodeposited on the optical fiber end,” Sensors (Basel)., vol. 14, no. 10, pp. 18701–18710, Oct. 2014, doi: 10.3390/s141018701. [6] E. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. Robinson, and J. Oliver, “Numerical Analysis of a Photonic Crystal Fiber for Biosensing Applications,” Quantum Electron. IEEE J., vol. 48, pp. 1403–1410, Nov. 2012, doi: 10.1109/JQE.2012.2213803. [7] A. A. Rifat et al., “Photonic crystal fiber based plasmonic sensors,” Sensors Actuators B Chem., vol. 243, pp. 311–325, 2017, doi: https://doi.org/10.1016/j.snb.2016.11.113. [8] B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sensors and Actuators, vol. 4, pp. 299–304, 1983, doi: https://doi.org/10.1016/0250-6874(83)85036-7. [9] M. A. Mollah, S. M. R. Islam, M. Yousufali, L. F. Abdulrazak, M. B. Hossain, and I. S. Amiri, “Plasmonic temperature sensor using D-shaped photonic crystal fiber,” Results Phys., vol. 16, p. 102966, 2020, doi: https://doi.org/10.1016/j.rinp.2020.102966. [10] B. Han et al., “Simultaneous measurement of temperature and strain based on dual SPR effect in PCF,” Opt. Laser Technol., vol. 113, pp. 46–51, May 2019, doi: 10.1016/j.optlastec.2018.12.010. 69 [11] S. A. Maier, “Plasmonics: The Promise of Highly Integrated Optical Devices,” IEEE J. Sel. Top. Quantum Electron., vol. 12, pp. 1671–1677, 2006. [12] S. P. Burgos, H. W. Lee, E. Feigenbaum, R. M. Briggs, and H. A. Atwater, “Synthesis and Characterization of Plasmonic Resonant Guided Wave Networks,” Nano Lett., vol. 14, no. 6, pp. 3284–3292, Jun. 2014, doi: 10.1021/nl500694c. [13] A. Khaleque, M. A. R. Franco, and H. T. Hatorri, “Ultra-broadband and compact polarization splitter for sensing applications,” in Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP), 2016, p. JM6A.2, [Online]. Available: http://opg.optica.org/abstract.cfm?URI=NP-2016-JM6A.2. [14] W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Opt. Lasers Eng., vol. 58, pp. 1–8, Jul. 2014, doi: 10.1016/j.optlaseng.2014.01.003. [15] M. S. Islam, M. R. Islam, J. Sultana, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Exposed-core localized surface plasmon resonance biosensor,” J. Opt. Soc. Am. B, vol. 36, no. 8, pp. 2306–2311, 2019, doi: 10.1364/JOSAB.36.002306. [16] M. M. Rahman, F. Mou, M. Bhuiyan, and M. Islam, “Photonic crystal fiber based terahertz sensor for cholesterol detection in human blood and liquid foodstuffs,” Sens. Bio-Sensing Res., p. 100356, Jun. 2020, doi: 10.1016/j.sbsr.2020.100356. [17] F. A. Mou, M. M. Rahman, M. R. Islam, and M. I. H. Bhuiyan, “Development of a photonic crystal fiber for THz wave guidance and environmental pollutants detection,” Sens. Bio-Sensing Res., vol. 29, p. 100346, Aug. 2020, doi: 10.1016/j.sbsr.2020.100346. [18] M. Islam, M. Kabir, T. Khandoker, and M. Islam, “A novel hollow core terahertz refractometric sensor,” Sens. Bio-Sensing Res., vol. 25, p. 100295, Jul. 2019, doi: 10.1016/j.sbsr.2019.100295. [19] J. Sultana, M. S. Islam, K. Ahmed, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Terahertz detection of alcohol using a photonic crystal fiber sensor,” Appl. Opt., vol. 57, no. 10, pp. 2426–2433, 2018, doi: 10.1364/AO.57.002426. [20] M. S. Islam et al., “A novel Zeonex based photonic sensor for alcohol detection in beverages,” in 2017 IEEE International Conference on Telecommunications and Photonics (ICTP), 2017, pp. 114–118, doi: 10.1109/ICTP.2017.8285905. [21] M. Islam, M. Hossain, S. Ali, J. Sultana, and M. Islam, “Design and Characterization of an Ultra Low Loss, Dispersion-Flattened Slotted Photonic Crystal Fiber for Terahertz Application,” J. Opt. Commun., Nov. 2018, doi: 10.1515/joc-2018-0152. 70 [22] A. Aming, M. Uthman, R. Chitaree, W. Mohammed, and B. M. A. Rahman, “Design and Characterization of Porous Core Polarization Maintaining Photonic Crystal Fiber for THz Guidance,” J. Light. Technol., vol. 34, no. 23, pp. 5583–5590, 2016, [Online]. Available: http://opg.optica.org/jlt/abstract.cfm?URI=jlt-34-23-5583. [23] K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express, vol. 17, no. 10, pp. 8592–8601, 2009, doi: 10.1364/OE.17.008592. [24] M. Ibadul Islam et al., “Design of single mode spiral photonic crystal fiber for gas sensing applications,” Sens. Bio-Sensing Res., vol. 13, pp. 55–62, 2017, doi: https://doi.org/10.1016/j.sbsr.2017.03.001. [25] H. Bao, K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Fabrication and characterization of porous-core honeycomb bandgap THz fibers,” Opt. Express, vol. 20, no. 28, pp. 29507–29517, 2012, doi: 10.1364/OE.20.029507. [26] M. Rabiul Hasan, M. Ariful Islam, M. S. Anower, and S. M. A. Razzak, “Low-loss and bend-insensitive terahertz fiber using a rhombic-shaped core,” Appl. Opt., vol. 55, no. 30, pp. 8441–8447, 2016, doi: 10.1364/AO.55.008441. [27] J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Light. Technol., vol. 4, no. 8, pp. 1071–1089, 1986, doi: 10.1109/JLT.1986.1074847. [28] J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett., vol. 21, no. 19, pp. 1547–1549, 1996, doi: 10.1364/OL.21.001547. [29] J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers.,” Science, vol. 282, no. 5393, pp. 1476–1478, Nov. 1998, doi: 10.1126/science.282.5393.1476. [30] S. Chowdhury et al., “Porous shaped photonic crystal fiber with strong confinement field in sensing applications: Design and analysis,” Sens. Bio-Sensing Res., vol. 13, pp. 63–69, 2017, doi: https://doi.org/10.1016/j.sbsr.2017.03.002. [31] M. S. Habib, M. S. Habib, S. M. Razzak, Y. Namihira, M. A. Hossain, and A. Khan, “Broadband Dispersion Compensation of Conventional Single Mode Fibers Using Microstructure Optical Fiber,” Opt. - Int. J. Light Electron Opt., vol. 124, pp. 3851– 3855, Oct. 2013, doi: 10.1016/j.ijleo.2012.12.014. [32] R. W. Clough and E. L. Wilson, “EARLY FINITE ELEMENT RESEARCH AT BERKELEY 1,” 1999. 71 [33] F. L. Teixeira, “Time-Domain Finite-Difference and Finite-Element Methods for Maxwell Equations in Complex Media,” IEEE Trans. Antennas Propag., vol. 56, no. 8, pp. 2150–2166, 2008, doi: 10.1109/TAP.2008.926767. [34] J.-Y. Wu and R. Lee, “The advantages of triangular and tetrahedral edge elements for electromagnetic modeling with the finite-element method,” IEEE Trans. Antennas Propag., vol. 45, pp. 1431–1437, 1997. [35] E. Kretschmann and H. Raether, “Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light,” Zeitschrift für Naturforsch. A, vol. 23, pp. 2135–2136, 1968. [36] A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Zeitschrift für Phys. A Hadron. Nucl., vol. 216, no. 4, pp. 398–410, 1968, doi: 10.1007/BF01391532. [37] I. Pockrand, J. D. Swalen, J. G. I. I. Gordon, and M. R. Philpott, “Surface plasmon spectroscopy of organic monolayer assemblies,” Surf. Sci., vol. 74, no. 1, pp. 237–244, 1978, [Online]. Available: http://inis.iaea.org/search/search.aspx?orig_q=RN:09402862. [38] B. Liedberg, I. Lundström, and E. Stenberg, “Principles of biosensing with an extended coupling matrix and surface plasmon resonance,” Sensors and Actuators B-chemical, vol. 11, pp. 63–72, 1993. [39] C. Striebel, A. Brecht, and G. Gauglitz, “Characterization of biomembranes by spectral ellipsometry, surface plasmon resonance and interferometry with regard to biosensor application,” Biosens. Bioelectron., vol. 9, no. 2, pp. 139–146, 1994, doi: https://doi.org/10.1016/0956-5663(94)80105-3. [40] S. Löfås and B. Johnsson, “A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands,” J. Chem. Soc.{,} Chem. Commun., no. 21, pp. 1526–1528, 1990, doi: 10.1039/C39900001526. [41] S. Sjölander and C. Urbaniczky, “Integrated fluid handling system for biomolecular interaction analysis.,” Anal. Chem., vol. 63, no. 20, pp. 2338–2345, Oct. 1991, doi: 10.1021/ac00020a025. [42] B. Gupta and A. Sharma, “Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: A theoretical study,” Sensors Actuators B Chem., vol. 107, pp. 40–46, May 2005, doi: 10.1016/j.snb.2004.08.030. [43] E. Descrovi, V. Paeder, L. Vaccaro, and H.-P. Herzig, “A virtual optical probe based on localized Surface Plasmon Polaritons,” Opt. Express, vol. 13, no. 18, pp. 7017–7027, 72 2005, doi: 10.1364/OPEX.13.007017. [44] C. R. Taitt, G. P. Anderson, and F. S. Ligler, “Evanescent wave fluorescence biosensors.,” Biosens. Bioelectron., vol. 20, no. 12, pp. 2470–2487, Jun. 2005, doi: 10.1016/j.bios.2004.10.026. [45] M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express, vol. 16, no. 12, pp. 8427–8432, 2008, doi: 10.1364/OE.16.008427. [46] T. Ahmed, A. K. Paul, M. S. Anower, and S. M. A. Razzak, “Surface plasmon resonance biosensor based on hexagonal lattice dual-core photonic crystal fiber,” Appl. Opt., vol. 58, no. 31, pp. 8416–8422, 2019, doi: 10.1364/AO.58.008416. [47] F. Haider, R. A. Aoni, R. Ahmed, M. S. Islam, and A. E. Miroshnichenko, “Propagation Controlled Photonic Crystal Fiber-Based Plasmonic Sensor via Scaled-Down Approach,” IEEE Sens. J., vol. 19, no. 3, pp. 962–969, 2019, doi: 10.1109/JSEN.2018.2880161. [48] R. Kashyap and G. Nemova, “Surface Plasmon Resonance-Based Fiber and Planar Waveguide Sensors,” J. Sensors, vol. 2009, p. 645162, 2009, doi: 10.1155/2009/645162. [49] M. R. Momota and M. R. Hasan, “Hollow-core silver coated photonic crystal fiber plasmonic sensor,” Opt. Mater. (Amst)., vol. 76, pp. 287–294, Feb. 2018, doi: 10.1016/j.optmat.2017.12.049. [50] C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection.,” Anal. Bioanal. Chem., vol. 407, no. 14, pp. 3883–3897, May 2015, doi: 10.1007/s00216-014-8411-6. [51] Y. Liu et al., “High-sensitivity plasmonic temperature sensor based on gold-coated D- shaped photonic crystal fiber,” Appl. Opt., vol. 58, no. 18, pp. 5115–5121, 2019, doi: 10.1364/AO.58.005115. [52] M. S. Islam et al., “Dual-polarized highly sensitive plasmonic sensor in the visible to near-IR spectrum,” Opt. Express, vol. 26, no. 23, pp. 30347–30361, 2018, doi: 10.1364/OE.26.030347. [53] H. Liang, T. Shen, Y. Feng, H. Liu, and W. Han, “A D-Shaped Photonic Crystal Fiber Refractive Index Sensor Coated with Graphene and Zinc Oxide,” Sensors, vol. 21, no. 1, 2021, doi: 10.3390/s21010071. [54] A. A. Rifat, G. A. Mahdiraji, Y. G. Shee, M. J. Shawon, and F. R. M. Adikan, “A Novel Photonic Crystal Fiber Biosensor Using Surface Plasmon Resonance,” Procedia Eng., vol. 140, pp. 1–7, 2016, doi: https://doi.org/10.1016/j.proeng.2015.08.1107. 73 [55] J. Lou, T. Cheng, S.-G. Li, and X. Zhang, “Surface plasmon resonance photonic crystal fiber biosensor based on gold-graphene layers,” Opt. Fiber Technol., vol. 50, pp. 206– 211, Jul. 2019, doi: 10.1016/j.yofte.2019.03.028. [56] M. Islam et al., “A Hi-Bi Ultra-Sensitive Surface Plasmon Resonance Fiber Sensor,” IEEE Access, vol. 7, pp. 79085–79094, Jun. 2019, doi: 10.1109/ACCESS.2019.2922663. [57] J. N. Dash and R. Jha, “SPR Biosensor Based on Polymer PCF Coated With Conducting Metal Oxide,” IEEE Photonics Technol. Lett., vol. 26, no. 6, pp. 595–598, 2014, doi: 10.1109/LPT.2014.2301153. [58] B. K. Paul et al., “The design and analysis of a dual-diamond-ring PCF-based sensor,” J. Comput. Electron., vol. 19, Sep. 2020, doi: 10.1007/s10825-020-01509-2. [59] A. A. Rifat et al., “Surface Plasmon Resonance Photonic Crystal Fiber Biosensor: A Practical Sensing Approach,” IEEE Photonics Technol. Lett., vol. 27, no. 15, pp. 1628– 1631, 2015, doi: 10.1109/LPT.2015.2432812. [60] I. Yakasai, P. E. Abas, S. Ali, and F. Begum, “Modelling and simulation of a porous core photonic crystal fibre for terahertz wave propagation,” Opt. Quantum Electron., vol. 51, p. 122, Apr. 2019, doi: 10.1007/s11082-019-1832-x. [61] J. R. DeVore, “Refractive Indices of Rutile and Sphalerite,” J. Opt. Soc. Am., vol. 41, no. 6, pp. 416–419, 1951, doi: 10.1364/JOSA.41.000416. [62] P. Bing, S. Huang, J. Sui, H. Wang, and Z. Wang, “Analysis and Improvement of a Dual-Core Photonic Crystal Fiber Sensor,” Sensors, vol. 18, no. 7, 2018, doi: 10.3390/s18072051. [63] M. Islam, J. Sultana, R. A. Aoni, A. Dinovitser, B. Ng, and D. Abbott, “Terahertz Sensing in a Hollow Core Photonic Crystal Fiber,” IEEE Sens. J., vol. 18, pp. 4073– 4080, May 2018, doi: 10.1109/JSEN.2018.2819165. [64] M. Ahasan Habib, M. Shamim Anower, and M. Rabiul Hasan, “Highly birefringent and low effective material loss microstructure fiber for THz wave guidance,” Opt. Commun., vol. 423, pp. 140–144, 2018, doi: https://doi.org/10.1016/j.optcom.2018.04.022. [65] M. Islam et al., “Zeonex based asymmetrical terahertz photonic crystal fiber for multichannel communication and polarization maintaining applications,” Appl. Opt., vol. 57, pp. 666–672, Feb. 2018, doi: 10.1364/AO.57.000666. [66] I. K. Yakasai, A. Rahman, P. E. Abas, and F. Begum, “Theoretical Assessment of a Porous Core Photonic Crystal Fiber for Terahertz Wave Propagation,” J. Opt. Commun., vol. 43, no. 2, pp. 199–209, 2022, doi: doi:10.1515/joc-2018-0206. 74 [67] G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. Rasmussen, and O. Bang, “Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing,” Opt. Mater. Express, vol. 7, p. 286, Jan. 2017, doi: 10.1364/OME.7.000286. [68] I. Yakasai, P. E. Abas, S. F. Kaijage, W. Caesarendra, and F. Begum, “Proposal for a Quad-Elliptical Photonic Crystal Fiber for Terahertz Wave Guidance and Sensing Chemical Warfare Liquids,” Photonics , vol. 6, no. 3. 2019, doi: 10.3390/photonics6030078. [69] Y. Wang, C. R. Liao, and D. N. Wang, “Femtosecond laser-assisted selective infiltration of microstructured optical fibers,” Opt. Express, vol. 18, no. 17, pp. 18056–18060, 2010, doi: 10.1364/OE.18.018056. [70] M. Rakibul Islam, M. M. I. Khan, F. Mehjabin, J. Alam Chowdhury, and M. Islam, “Design of a fabrication friendly & highly sensitive surface plasmon resonance-based photonic crystal fiber biosensor,” Results Phys., vol. 19, p. 103501, 2020, doi: https://doi.org/10.1016/j.rinp.2020.103501. [71] M. Islam et al., “Design and Analysis of a Biochemical Sensor Based on Surface Plasmon Resonance with Ultra-high Sensitivity,” Plasmonics, Jan. 2021, doi: 10.1007/s11468-020-01355-9. [72] Y. Ming, Z. Wu, H. Wu, F. Xu, and Y. Lu, “Surface Plasmon Interferometer Based on Wedge Metal Waveguide and Its Sensing Applications,” IEEE Photonics J., vol. 4, pp. 291–299, Feb. 2012, doi: 10.1109/jphot.2012.2186562. [73] S. Mirzanejhad, A. Ghadi, and M. Daraei, “Numerical study of nanoscale biosensor based on surface plasmon polariton propagation in Mach-Zehnder interferometer structure,” Phys. B Condens. Matter, vol. 557, Dec. 2018, doi: 10.1016/j.physb.2018.12.038. en_US
dc.identifier.uri http://hdl.handle.net/123456789/1624
dc.description Supervised by Prof. Dr. Mohammad Rakibul Islam Department of Electrical and Electronic Engineering, Islamic University of Technology (IUT), Boardbazar, Gazipur-1704. This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Electrical and Electronic Engineering, 2022. en_US
dc.description.abstract In past decades, there have been great interest among researchers to utilize the usage extents of photonic crystal fibers or PCFs, more eminently in sensing purposes. PCFs are compact in nature and can be easily integrated in optical systems. Though many PCF design prototypes are available, an easy fabrication friendly PCF designs are of great need. In our research work, we have implemented three distinct types of sensing mechanisms in photonic crystal fibers; most importantly which can be easily manufactured using current technologies. The designs have been implemented using COMSOL Muliphysics which utilizes the finite element method (FEM). The first type of sensing mechanism involves the launching terahertz wave through PCF cross-section; the Terahertz based sensing. The target analyte are filled inside the core of the PCF sensor and percentage of the output transmitted wave power is measured. In THz based sensing, we have proposed two different types of designs. In the first design, we have analyzed hexagonally defined porous cladding used to detect cyanides; which obtained maximum sensitivity of 99.75%. Next we designed a square structured cross-sectional PCF sensor for sensing of amino acids and the proposed sensor exhibited an optimum relative sensitivity of 99.98%. The second type of sensing mechanism we have analyzed using PCF is Surface Plasmon Resonance (SPR) based sensing. In this design, we have used a combination of gold and titanium dioxide for generating surface plasmon wave, necessary for this sensing mechanism. The sensor presented a remarkably high amplitude sensitivity of 4646.1 RIU-1and wavelength sensitivity of 10000 nm/RIU. Most recently, we have implemented a PCF based Mach Zehnder Interferometer utilizing splitting of surface plasmon mode. The novel sensor evinced an outstanding sensitivity of 14.152 dB/RIU. All the proposed sensor designs have been reviewed in details in the following chapters. It is our hope that the proposed sensor models would have major contributions in analyte sensing in different sectors and industry en_US
dc.language.iso en en_US
dc.publisher Department of Electrical and Electronic Engineering(EEE), Islamic University of Technology(IUT), en_US
dc.subject PCF, MZI, SPR, Sensor en_US
dc.title PCF-Mach Zehnder Interferometer Sensor employing the splitting of the surface plasmon mode en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics