dc.identifier.citation |
[1] T. Akter et al., “Machine learning-based models for early stage detection of autism spectrum disorders,” IEEE Access, vol. 7, pp. 166509–166527, 2019. [2] F. Thabtah, “Machine learning in autistic spectrum disorder behavioral research: A review and ways forward,” Informatics for Health and Social Care, vol. 44, no. 3. Taylor and Francis Ltd, pp. 278–297, Jul. 03, 2019, doi: 10.1080/17538157.2017.1399132. [3] K. Akyol, “Assessing the importance of autistic attributes for autism screening,” Expert Syst., vol. 37, no. 5, pp. 1–10, 2020, doi: 10.1111/exsy.12562. [4] S. Raj and S. Masood, “Analysis and Detection of Autism Spectrum Disorder Using Machine Learning Techniques,” Procedia Comput. Sci., vol. 167, no. 2019, pp. 994– 1004, 2020, doi: 10.1016/j.procs.2020.03.399. [5] S. Akhter, A. H. M. E. Hussain, J. Shefa, G. K. Kundu, F. Rahman, and A. Biswas, “Prevalence of Autism Spectrum Disorder (ASD) among the children aged 18-36 months in a rural community of Bangladesh: A cross sectional study [version 1; referees: 1 approved, 2 approved with reservations],” F1000Research, vol. 7, no. May, pp. 1–15, 2018, doi: 10.12688/f1000research.13563.1. [6] K. D. Rajab, A. Padmavathy, and F. Thabtah, “Machine Learning Application for Predicting Autistic Traits in Toddlers,” Arab. J. Sci. Eng., vol. 46, no. 4, pp. 3793– 3805, 2021, doi: 10.1007/s13369-020-05165-3. [7] F. Thabtah, “Autism spectrum disorder screening: Machine learning adaptation and DSM-5 fulfillment,” in ACM International Conference Proceeding Series, May 2017, vol. Part F1293, pp. 1–6, doi: 10.1145/3107514.3107515. [8] M. S. Mythili and A. R. M. Shanavas, “A Study on Autism Spectrum Disorders using Classification Techniques,” Int. J. Soft Comput. Eng., no. 5, pp. 2231–2307, 2014, [Online]. Available: http://www.ijsce.org/wpcontent/uploads/papers/v4i5/E2433114514.pdf. [9] C. Allison, B. Auyeung, and S. Baron-Cohen, “Toward brief ‘red flags’ for autism screening: The short Autism Spectrum Quotient and the short Quantitative Checklist in 1,000 cases and 3,000 controls,” J. Am. Acad. Child Adolesc. Psychiatry, vol. 51, no. 2, pp. 202-212.e7, 2012, doi: 10.1016/j.jaac.2011.11.003. [10] F. Thabtah, “An accessible and efficient autism screening method for behavioural data and predictive analyses,” Health Informatics J., vol. 25, no. 4, pp. 1739–1755, 2019, 59 doi: 10.1177/1460458218796636. [11] C. Küpper et al., “Identifying predictive features of autism spectrum disorders in a clinical sample of adolescents and adults using machine learning,” Sci. Rep., vol. 10, no. 1, pp. 1–11, 2020, doi: 10.1038/s41598-020-61607-w. [12] K. S. Oma, P. Mondal, N. S. Khan, M. R. K. Rizvi, and M. N. Islam, “A Machine Learning Approach to Predict Autism Spectrum Disorder,” 2nd Int. Conf. Electr. Comput. Commun. Eng. ECCE 2019, no. April, 2019, doi: 10.1109/ECACE.2019.8679454. [13] R. Vaishali and R. Sasikala, “A machine learning based approach to classify Autism with optimum behaviour sets,” Int. J. Eng. Technol., vol. 5, no. x, pp. 1–6, 2017, doi: 10.14419/ijet.v7i3.18.14907Published. [14] E. T. Prud’hommeaux, B. Roark, L. M. Black, and J. van Santen, “Classification of atypical language in autism,” Acl Hlt 2011, no. June, p. 88, 2011. [15] K. T. Quach, “Application of Artificial Neural Networks in Classification of Autism Diagnosis Based on Gene Expression Signatures,” 2012. [16] A. Genkin, D. D. Lewis, and D. Madigan, “Large-scale bayesian logistic regression for text categorization,” Technometrics, vol. 49, no. 3, pp. 291–304, 2007, doi: 10.1198/004017007000000245. [17] P. Mohan and I. Paramasivam, “Feature reduction using SVM-RFE technique to detect autism spectrum disorder,” Evol. Intell., no. 0123456789, 2020, doi: 10.1007/s12065- 020-00498-2. [18] H. Wang, L. Li, L. Chi, and Z. Zhao, “Autism Screening Using Deep Embedding Representation,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 11537 LNCS, pp. 160–173, 2019, doi: 10.1007/978- 3-030-22741-8_12. [19] K. Akyol, Y. Gultepe, and A. Karaci, “A Study on Autistic Spectrum Disorder for Children Based on Feature Selection and Fuzzy,” Int. Congr. Engieneering Life Sci., no. October, pp. 804–807, 2018. [20] M. Thomas and A. Chandran, “Artificial Neural Network for Diagnosing Autism Spectrum Disorder,” Proc. 2nd Int. Conf. Trends Electron. Informatics, ICOEI 2018, vol. 3, no. 2, pp. 930–933, 2018, doi: 10.1109/ICOEI.2018.8553781. [21] O. Altay and M. Ulas, “Prediction of the autism spectrum disorder diagnosis with linear discriminant analysis classifier and K-nearest neighbor in children,” 6th Int. Symp. Digit. Forensic Secur. ISDFS 2018 - Proceeding, vol. 2018-Janua, pp. 1–4, 60 2018, doi: 10.1109/ISDFS.2018.8355354. [22] G. Lucarelli and M. Borrotti, Artificial Intelligence Applications and Innovations, vol. 559, no. 691154. Cham: Springer International Publishing, 2019. [23] N. Goel, B. Grover, Anuj, D. Gupta, A. Khanna, and M. Sharma, “Modified Grasshopper Optimization Algorithm for detection of Autism Spectrum Disorder,” Phys. Commun., vol. 41, p. 101115, 2020, doi: 10.1016/j.phycom.2020.101115. [24] S. B. Shuvo, J. Ghosh, and A. S. Oyshi, “A Data Mining Based Approach to Predict Autism Spectrum Disorder Considering Behavioral Attributes,” 2019 10th Int. Conf. Comput. Commun. Netw. Technol. ICCCNT 2019, pp. 1–5, 2019, doi: 10.1109/ICCCNT45670.2019.8944905. [25] A. Choudhury and C. M. Greene, “Prognosticating Autism Spectrum Disorder Using Artificial Neural Network: Levenberg-Marquardt Algorithm,” arXiv, vol. 2, no. 6, 2018, doi: 10.26502/acbr.50170058. [26] N. Chakrabarty and S. Biswas, “Navo Minority Over-sampling Technique (NMOTe): A Consistent Performance Booster on Imbalanced Datasets,” J. Electron. Informatics, vol. 2, no. 2, pp. 96–136, 2020, doi: 10.36548/jei.2020.2.004. [27] M. M. Nishat et al., “Detection of Autism Spectrum Disorder by Discriminant Analysis Algorithm,” Lect. Notes Data Eng. Commun. Technol., vol. 95, pp. 473–482, 2022, doi: 10.1007/978-981-16-6636-0_36. [28] M. J. Zaki and W. Meira, Jr, “Linear Discriminant Analysis,” Data Min. Mach. Learn., pp. 501–516, 2020, doi: 10.1017/9781108564175.025. [29] A. Singh, B. S. Prakash, and K. Chandrasekaran, “A comparison of linear discriminant analysis and ridge classifier on Twitter data,” Proceeding - IEEE Int. Conf. Comput. Commun. Autom. ICCCA 2016, pp. 133–138, 2017, doi: 10.1109/CCAA.2016.7813704. [30] https://www.geeksforgeeks.org/ml-extra-tree-classifier-for-feature-selection/ [31] https://www.javatpoint.com/data-preprocessing-machine-learning [32] https://medium.com/analytics-vidhya/why-hyper-parameter-tuning-is-important-foryour-model-1ff4c8f145d3 [33] https://www.javatpoint.com/k-nearest-neighbor-algorithm-for-machine-learning [34] https://www.upgrad.com/blog/gaussiannaivebayes/#:~:text=What%20is%20Gaussian%20Na%C3%AFve%20Bayes,theorem %20with%20strong%20independence%20assumptions. [35] https://iq.opengenus.org/bernoulli-naive-bayes/ 61 [36] https://www.upgrad.com/blog/multinomial-naive-bayesexplained/#:~:text=The%20Multinomial%20Naive%20Bayes%20algorithm%20is%20 a%20Bayesian%20learning%20approach,tag%20with%20the%20greatest%20chance. [37] https://www.geeksforgeeks.org/ml-linear-discriminantanalysis/#:~:text=Linear%20discriminant%20analysis%20(LDA)%20is,values%2C%2 0which%20form%20a%20template. [38] https://medium.com/machine-learning-researcher/dimensionality-reduction-pca-andlda-6be91734f567 [39] https://www.geeksforgeeks.org/quadratic-discriminant-analysis/ [40] https://www.datascienceblog.net/post/machine-learning/linear-discriminant-analysis/ [41] https://datacadamia.com/data_mining/discriminant_analysis_quadratic [42] https://towardsdatascience.com/going-beyond-the-simpleimputer-for-missing-dataimputation-dd8ba168d505 [43] https://towardsdev.com/how-to-identify-missingness-types-with-missingno61cfe0449ad9 [44] https://www.analyticsvidhya.com/blog/2020/07/knnimputer-a-robust-way-toimpute-missing-values-using-scikit-learn/ [45] https://www.jair.org/index.php/jair/article/view/10302 [46] https://arxiv.org/abs/1106.1813 [47] https://machinelearningmastery.com/smote-oversampling-for-imbalancedclassification/ |
en_US |